Анемометр arduino: комплектующие, схема устройства, скетч

Ультразвуковой анемометр на двух HC-SR04

Ранее был сделан прототип анемометра из одного ультразвукового дальномера HC-SR04. Он умел рассчитывать проекцию скорости ветра на линию между приемником и передатчиком. Для получения вектора скорости ветра на плоскости (2D) требуется вторая координата, которую мы получим, если добавим второй датчик перпендикулярно первому. В этом случае можно закрепить анемометр стационарно — отпадает необходимость использовать флюгер и как-то организовывать подвижные контакты.

Первая версия

Сказано — сделано, причем основательно.

Из обрезков полипропиленовых труб сварил крестовину. Все датчики отпаял и удлинил проводами, которые проложил внутри труб. Расстояние между датчиками получилось 70 см.

Код программы такой.

Два последних числа дают искомую горизонтальную скорость и направление ветра. Направление рассчитывается в виде азимута к направлению на север и дается в градусах. Вращение по часовой стрелке.

Увы, результаты меня разочаровали.

При усреднении в 25 измерений, показания в спокойном воздухе прыгают в среднем до 1.5 м/с, при этом измерения выдаются примерно раз в сек. Если усреднить в 10 раз больше показаний ситуация улучшается, но кардинально проблему не решает. К тому же судя по графику скоростей в двух осях, одна пара датчиков фонит существенно больше другой. Скорее всего дело в проводах, которыми я удлинил датчики. Придется переделывать.

Вторая версия

Есть еще одна причина все переделать. Как отмечалось в первой теоретической части, скорость звука изменится на 1 м/с при изменении температуры примерно на 1.5 °С. Погрешности измерений по обоим осям складываются. Нужно понимать, что порывы теплого или холодного воздуха могут существенно исказить показания такого анемометра. Нет смысла в показаниях 4 м/с при легком дуновении теплого ветерка. Из диаграммы натурного эксперимента видно, что даже медленное изменение температуры вызывает дрейф измеренной скорости, а быстрое изменение температуры на 1 градус скачком поменяло измеренную скорость ветра на 1.5 м/с, в то время как датчик температуры медленно отрабатывает это изменение. Важно заметить, что эксперимент этот проходил прямо у меня на столе и изменение температуры было естественным — я ничего не трогал и искусственно ничего не нагревал.

И тут на помощь приходит тот же принцип, что и при измерении расстояния. Если помним, датчики у оригинального HC-SR04 расположены вместе, поэтому результаты не зависят от наличия ветра. Если измерить скорость звука на известном расстоянии сначала в одном направлении, а затем в другом, то разница этих двух показаний, деленная пополам и будет искомой скоростью ветра в проекции на эту ось. При этом, изменение температуры в диапазоне ±25°С дает погрешность ±4%, что абсолютно не критично и мы можем обойтись вообще без термометра. Да и зачем нам термометр? Если мы знаем время прохождения сигнала в обоих направлениях, то по формулам из прошлой статьи мы легко вычислим температуру, а значит сможем уточнить скорость ветра.
Есть лишь одна маленькая загвоздка — придется использовать два HC-SR04 на одной оси. В промышленных образцах датчики попеременно выполняют роль приемника и передатчика. В нашем случае для этого придется подключить пищалки напрямую к arduino и программно генерировать 8 импульсов 40 кГц на одной, после чего вычленять их из другой. Зная про определенные сложности на этом пути, мне представляется проще купить еще 2 датчика по 55 рублей и попытаться обойтись малой кровью. Этим я займусь в следующий раз. А пока на двух датчиках сделаю измерение скорости ветра по одной оси и измерение температуры в такой конфигурации. Главная проблема здесь убрать помехи, которые дают такой большой разброс показаний в спокойном воздухе.

Конструкция

Вооружившись паяльником конструкция была беспощадно распаяна на составляющие. Новую версию решил не делать так основательно, а зря. Никогда не угадаешь, где найдешь, где потеряешь. Получилось как-то так.

Во-первых, приемник расположил как можно ближе к плате, а передатчик удалил всего лишь на 20 см. Второй комплект перевернул на 180 градусов и пищалки скрепил попарно изолентой. Чем точнее соблюсти соосность обоих пар датчиков, тем лучше. В идеале мы должны получить абсолютно идентичные показания скорости прохождения сигнала в обоих направлениях в спокойном воздухе. Натурные испытания подтвердили нашу теорию. В такой конфигурации получается мало помех и весьма точные показания независимо от температуры, что подтверждается графиком ниже.

Вначале я пробовал просто дуть по направлению от синей пары к черной. Моих легких явно недостаточно. Но любопытный факт — воздух в легких успел нагреться на 1°, что раньше вызвало бы скачок скорости на 1.5 м/с, т.к. DS18B20 просто ничего не заметил. Отметим, что мои легкие способны дать всего лишь 0.5 м/с. Дальше я включил большой напольный вентилятор и направил все также от синего к черному. Видно как пошел более прохладный воздух из глубины комнаты и даже DS18B20 начал отрабатывать это снижение, но теперь его значения не используются для расчета скорости. Сделал открытие, что мой вентилятор дует со скоростью около 2 м/с. Дальше в течение паузы видим постепенное увеличение температуры и отличную корреляцию между рассчитанной и измеренной температурой. В конце поставил вентилятор с другой стороны и получил 2 м/с в обратном направлении с падением температуры. Ура, товарищи, это работает!

Программа расчета скорости ветра

Программа будет работать и без датчиков DHT-21 и DS18B20. DS18B20 для вычислений в этом коде нигде не задействован — только выводится в терминал как эталон. Без датчика влажности температура будет рассчитываться как для воздуха с 50% влажностью. На практике это вносит очень маленькую погрешность. На измерения скорости ветра эти датчики вообще не оказывают никакого влияния.

Собственно это все что можно выжать из двух HC-SR04. Для получения вектора скорости ветра на плоскости нужно добавить еще 2 датчика перпендикулярно первым и по формулам первой версии получить полную скорость и направление. Этим займусь как только приедут заказанные дополнительные датчики.

Датчики давно приехали, конструкцию переделывал еще 2 раза и в конце концов он заработал как надо, но до крыши этот ультразвуковой анемометр так и не доехал, поэтому до сих пор продолжения и не написал, хотя идея рабочая.

P.P.S. 2018

По многочисленным просьбам выкладываю итоговый скетч, который не требует никаких библиотек (кроме стандартной EEPROM) и работает с 4 датчиками. Код со всякими вкусностями типа встроенной калибровки и сохранением калибровочных значений в энергонезависимую память. И самое главное. Описанная выше проблема с погрешностями по одной из осей была связана не с проводами, а с работающими в одной комнате с датчиками импульсными блоками питания компьютера, монитора и т.п. (их схема преобразования работает на близкой частоте 40 кГц). Я остановился на проблеме выноса датчика на улицу подальше от помех (с передачей данных по блютус). В остальном это работает. Это версия для распаянных датчиков, но есть способ не распаивать. Если вернусь к проекту — реализую.
Для этого кода неважно какое расстояние между датчиками. Нужно поместить устройство в безветренное пространство (и без импульсных помех) и через терминал несколько раз отдать 2 команды:

Первая — текущая температура по эталонному термометру (любой уличный), вторая — говорит контроллеру что сейчас скорость ветра 0. Согласно этим данным он вычислит расстояние между датчиками и запишет их в EEPROM. Все дальнейшие измерения будут отталкиваться от этих значений.

Cамодельный анемометр

Опубликовано 17.09.2013 21:06:00

Автор: roman2205

История такова. Перед тем как тратить деньги на большой проект ветряка решил сначала сделать анемометр, который покажет есть ли у меня ветры. А потом будет как дополнительный датчик для тормозной системы, который будет оповещать, что поднялся сильный ветер.

Должно было получиться что-то вот такое

Этапы изготовления самого датчика:

Корпус сделал так: взял кусок квадратной трубы в ней вырезал окошко, чтобы через него потом смонтировать начинку (кстати окошко вырезал с температурой, но так мне очень хотелось это сделать, что встал и пошел пилить). Затем внутрь приварил пластину (держатель внутреннего подшипника), тогда приварил низ (держатель нижнего подшипника). Когда решил делать верх задумал сделать скатную крышу-для этого вырезал четыре треугольника и аккуратно поприхватывал, а затем проварил полностью и так сделал заостренный козырек. Тогда зажал в тиски и сверлом на 0,5 мм меньше, чем диаметр подшипника просверлил вертикально отверстие в нижние крышке и в средние, оба для подшипников. Чтоб подшипники стали с натяжкой подгонял разверткой. Подшипники встали как родные. Затем в них вставил чуть-чуть подшлифованный гвоздь 100-ку при этом в середине окошка надев на него пластмассовую шаийбу с 4-мя прорезями. На гвозде снизу нарезал резьбу и на нее накрутил крыльчатку.

Крыльчатку изготовил так: к гайке электродом двойкой приварил три гвоздя потом их обрезал и на концах нарезал резьбу которой прикрутил половинки от мячика.

К корпусу приварил держатель- шестигранный пруток из нержавейки. Сам корпус покрасил белой эмалью два раза, чтобы точно не ржавел.

Решил не придумывать велосипед, а сделать так как в компьютерной мышке, есть пластмассовая шайба с четырьмя прорезями на оси вращения, когда крыльчатка крутится то крутится и шайба при этом проемы мелькают над датчиком, который крепится к передней крышки и когда крышка прикручивается, то он как раз становится так что шайба с прорезями крутится и заступает и отступает световой поток от светодиода к фототранзистору. Все… тут вам и импульсы, а их можно посчитать и иметь количество оборотов в секунду.

Светодиодиодно – фототранзисторный датчик выдернул из принтера, там таких навалом.

Сначала сделал из теннисных мячиков

Пришлось немного модифицировать прибор. На крыльчатка от теннисных мячиков он стартовал при ветре 5м/с. были куплены мячики в магазине детских игрушек диаметром 55 мм. Стартует при 2м/с и ведет измерения до 22 м/с, Мне хватаєт.

После того как датчик был готов. Надо было сделать электронику.

Первый вариант был самодельный ЛУТ технология + зеленая маска из Китая, сохнет под ультрафиолетом.

55 на фотографии это оборотов в секунду. Надо было как-то перевести в м/с. Долго думал как, достал даже два анемометры старый еще с СССР и китайский за 50 $, но с поверкой возникли проблемы, потому что ветер порывистый и не дует стабильно.

Поэтому придумал так: в выходной день я с Папой нашли за городом 2 км ровной дороги без машин, без ветра и с обеих сторон посадка деревьев (Папа за рулем а я сидел наполовину за окном) и давай гонять взад вперед. Сначала выставил СССР-кий и китайские анемометры я убедился, что они оба показывают одинаково и правильно, потому что если разделить скорость на спидометре машины на 3,6 то получалась цифра которую показывали анемометры в м/с. Папа ехал с одинаковой скоростью и приборы показывали одинаковый ветер. Таким образом я и проверял свой прибор. Папа добавлял каждый раз +5 км в час, а я записывал новый показатель (оборотов в секунду). Замеры провел трижды. Когда мы ехали более 80 км/ч (22м/с) мой анемометр уже не мог раскрутиться и цифра замирала, потому более 22м/с он не измеряет.

Кстати, Китайский показывал до 28м/с. СССР-кий до 20м/с. Когда установил его в месте с доработанной программой, еще раз сверил с китайским все сошлось.

Сейчас переделывается под Ардуино.

В планах это докрутить в систему умного дома, чтобы можно было со смартфона заходить и управлять нагрузками в доме, смотреть температуру в доме (для меня это актуально, просто порой газ выключают зимой и хорошо видеть какая температура) будет еще датчик газа, и плюс будет отображаться скорость ветра у дома.

Видео работы

Результаты работы за зиму

с-сть — часов за зиму
0 м/с — 511,0
1 м/с — 475,0
2 м/с — 386,5
3 м/с — 321,2
4 м/с — 219,0
5 м/с — 131,5
6 м/с — 63,3
7 м/с — 32,5
8 м/с — 15,4
9 м/с — 9,1
10 м/с — 5,0
11 м/с — 3,5
12 м/с — 2,2
13 м/с — 1,3
14 м/с — 0,8
15 м/с — 0,5
16 м/с — 0,5
17 м/с — 0,2
18 м/с — 0,0
19 м/с — 0,1

По результатам за две зимы я увидел что ветры у меня не сильные и ветряк будет не эффективен, поэтому сделал маленький с лопастями по 50см. мощностью в пику 150 Вт. Сделал просто, чтобы хотя бы одна экономная лампочка светила когда свет пропадет.

Теперь немного о Arduino.

Нашел в Интернете схему работы мышки, она наглядно иллюстрирует как работает моя система.

Отталкиваясь от схемы мышки я сделал следующую схемку.

Импульсы поступают с фототранзистора на Arduino, а он воспринимает их как нажатия кнопки.

Алгоритм работы программы таков: Считаем сколько нажатий кнопки произошло за одну секунду вот и имеем частоту вращения. Для того чтобы эту частоту перевести в м/с. еще когда я делал на Атмел я сделал алгоритм расчета частоты в м / с. Выглядел он так:

int ob_per_sec=0; // Переменная в которую попадает частота оборотов в секунду.

int speed_wind=0; // Сюда будет попадать значение после пересчета частоты в м/с.

int speed_wind_max=0; // Сюда попадает максимальное значение показаний ветра м/с.

int speed_wind_2=0; // К-во секунд с начала работы программы со скоростью ветра 2 м/с.

int speed_wind_3=0; // К-во секунд с начала работы программы со скоростью ветра 3 м/с.

int speed_wind_4=0; // К-во секунд с начала работы программы со скоростью ветра 4 м/с.

int speed_wind_5=0; // К-во секунд с начала работы программы со скоростью ветра 5 м/с.

int speed_wind_22=0; // К-во секунд с начала работы программы со скоростью ветра 22 м/с.

if (ob_per_sec >0 && ob_per_sec 4 && ob_per_sec 7 && ob_per_sec 11 && ob_per_sec 15 && ob_per_sec 18 && ob_per_sec 23 && ob_per_sec 27 && ob_per_sec 60 && ob_per_sec speed_wind_max)< speed_wind_max = speed_wind ;>// проверяем и перезаписываем, если максимальное значение больше чем предыдущее записанное.

И выводим на экран значение.

При необходимости можно затем просмотреть сколько минут дул ветер с определенной скоростью, для этого нужно на экран вывести переменную (с необходимым индексом скорости) speed_wind_№ (но разделить ее на 60, чтобы получились минуты.).

Я у себя в программе сделал так: при нажатии определенной кнопки поочередно выводятся все переменные, от speed_wind_1 до speed_wind_22.

А как же комментарии?

В данный момент еще реализованы не все элементы нашего сообщества. Мы активно работаем над ним и в ближайшее время возможность комментирования статей будет добавлена.

Делаем анемометр на Arduino для измерения скорости ветра

Анемометром называют устройство, использующиеся в метеорологии для показания скорости и направления ветровых волн. Составляющие компоненты: чашечная верхушка, крепко прицепленная к оси прибора, соединяется с механизмом измерения. Когда воздушный поток проходит сквозь приспособление, чашечки или лопасти активизируются и начинают вращаться вокруг осевого столба.

Конструируют метеорологический инструмент, учитывая, для какого конкретного действия он будет предназначен. Анемометр измеряет количество оборотных действий чашечек или лопастей вокруг осевого центра в определенное время, что обычно равняется расстоянию, после этого считается скорость ветровых потоков в средней величине.

В другом случае лопасти или чашечки присоединяются к индукционному тахометру, заряженному электричеством. Здесь скорость ветровых потоков показывается сразу: не нужно дополнительно просчитывать другие величины и наблюдать за меняющейся скоростью.

Вышеописанный прибор можно с легкостью сконструировать в домашних условиях. Статья ниже расскажет читателю, как сделать автоматический Arduino анемометр в домашних условиях.

Шаг 1: Инструмент и периферия для изготовления анемометра на базе Arduino

В таблице ниже перечислены все необходимые компоненты для конструирования и их особенности.

Компонент Особенности
Модуль МПЗ Во всех инструкциях указано, что общая поддержка модуля равняется 25 тысячам фрагментов фраз, звуковых сигналов и мелодичных тонов. Загруженное аудио делится ровно на 255 музыкальных композиций. Встроено 30 уровней для регулирования громкости, а эквалайзер включает в себя 6 режимов обработки.
«Ручной» анемометр Инструмент представляет собой сенсорный датчик, который используется для слежения и оповещения, для человека, занимающегося различными видами спорта, где учитывается дуновение ветра.

Внутрь встроен контроллер, работа которого заключается в отсеивании помех. Следовательно, исходящий сигнал будет надежным и увеличенным по громкости. Через секунду с момента появления ветра датчик запиликает, и на сенсоре высветится показатель.

Корпус сооружения полностью спрятан от попадания влаги. Разъем, куда присоединен шнур питания, также обмотан водонепроницаемым материалом. Само устройство сконструировано с использованием прочного металла. Поэтому такой сенсор не боится плохих погодных условий под открытым небом.

Микропроцессор Ардуино Составляющие компоненты микропроцессора: аппаратная и программная группа. Программируемый код записан на знаменитом языке программирования С++, который был гораздо упрощен до Wiring. В микропроцессор встроена бесплатная среда, в которой любой пользователь может дать жизнь своей программе с помощью кода. Ардуино-среду разработки поддерживают все операционные системы: Виндовс, Мак ОС и Линукс.

Ардуино-платформа «разговаривает» с компьютером с помощью юсб-кабеля. Чтобы микропроцессор работал в автономном режиме, придется приобрести блок питания до 12 В. Однако питание для Ардуино-платформы, кроме юсб адаптера, может осуществляться с помощью батареи. Определение источника производится автоматическим образом.

Норма для питания платы варьируется между 6 и 20 В. Следует учитывать, что если напряжение в электрической сети меньше 7 В, работа микропроцессора становится неустойчива: возникает перегрев, после чего на плате появляются повреждения. Поэтому не стоит верить указанной в инструкции норме питания и выбрать диапазон, начиная с 7 В.

Встроенная в микропроцессор флеш-память равна 32 кБ. Однако 2 кБ потребуется для работы бутлоадера, с помощью которого осуществляется прошивка Ардуино с использованием компьютера и юсб-кабеля. Предназначение флеш памяти в таком случае – сохранение программ и надлежащих статических ресурсов.

В Ардуино платформу также включена СРАМ-память, в которой числится 2 кБ. Предназначение данного вида памяти микропроцессора – сохранение временных сведений в качестве переменных, использующихся в программных кодах. Данную закономерность можно сравнить с оперативной памятью любого компьютерного устройства. Когда платформа отключается от источника питания, оперативная память очищается.

Динамик с мощностью до 3-х Вт Можно купить в любом компьютерном магазине.
Карта с памятью не меньше 32 Гб Аналогично предыдущему пункту.
Резистор на 220 Ом в количестве 2 штуки Такие резисторы отличаются постоянной мощностью в 0,5 ВТ и точностью до 5 процентов. Работа осуществляется под напряжением не более 350 В.
Батарея «Крона» Батарейка «Крона» сделана на алкалайновой основе и отлично работает на 9 В. Инструмент предназначен для управления электронной самодельной аппаратурой, к которой подключаются периферийные устройства наподобие сенсорных или дисплейных датчиков. Выпускает заряженное «чудо» компания из Германии – Ansmann.
Кабель питания для подзарядки батареи Кабель предназначен для того, чтобы заряжать стандартные батарейки «Крона» на 9 В. С одной стороны торчит штекер с плюсовым центром, с другой – разъем для применения батареи.
Провода для соединения схемы «папа-папа» Данные провода отлично соединяют периферийные устройства между собой.
Бредбоард Бредбоард – специальная дощечка, которая создана для прототипирования. Такое устройство не заставит юного электронщика делать множественные спайки, которые обычно требуются для конструирования электронных устройств.
Клеммник в количестве 3 штуки Клеммник – небольшая коробочка для присоединения пары контактов. Расстояние между разъемами контактов равняется 2х3 мм. Оборудование легко установить на макетной плате: все соединительные провода плотно фиксируются и крепко сжимаются.

Шаг 2: Схема подключения

После того, как все компоненты куплены или собраны, переходим к схеме подключения ардуино анемометра:

  1. Соединяем все вышеперечисленные компоненты выше между собой, используя при этом соединительные провода и клеммники. Питание пока не включаем.
  2. Записываем на флешку 7 поочередных мелодий, придумываем соответствующие названия.
  3. Флешку подключаем к МП3-модулю.
  4. Подаем в устройство питание.
  5. В разделе ниже приведен код программы, которую нужно перенести на Ардуино микропроцессор.
  6. Испытываем прибор в действии.

Шаг 3: Программирование Arduino для считывания данных с анемометра

Алгоритм кода для осуществления работы анемометра:

Шаг 4: Дополнительные примеры

Еще один вариант реализации этого устройства продемонстрировали коллеги из компании ForceTronics. Они сделали видео о том как происходил процесс создания анемометра:

Скетч для микроконтроллера от этой компании ниже:

На этом пока всё. Желаем вам хороших проектов! Любые пожелания и комментарии вы можете оставить в нашей группе ВКонтакте.

ЧАСЫ-МЕТЕОСТАНЦИЯ НА ARDUINO

28.01.19 meteoClock_v1.3: исправлено предсказание погоды (работало “наоборот”)
19.04.19 meteoClock_v1.5: добавлено управление яркостью подсветки и светодиода по датчику света. Смотрите последнюю схему!

Рекомендую ознакомиться с модифицированной прошивкой от Norovl, в ней полностью переработан интерфейс, русифицированы дни недели и добавлено меню на русском языке. Почитать и скачать можно на GitHub автора .

Решил таки сделать свою версию метеостанции-часов-календаря на Arduino с кучей датчиков и различными крутыми штуками! Проект уместился в корпусе G909G из магазина Чип и Дип, питается от micro-USB и выглядит весьма неколхозно! =)

  • Большой дешёвый LCD дисплей
  • Вывод на дисплей:
    • Большие часы
    • Дата
    • Температура воздуха
    • Влажность воздуха
    • Атмосферное давление (в мм.рт.ст.)
    • Углекислый газ (в ppm)
    • Прогноз осадков на основе изменения давления
  • Построение графиков показаний с датчиков за час и сутки
  • Индикация уровня CO2 трёхцветным светодиодом (общий анод/общий катод, настраивается в прошивке)
  • Переключение режимов сенсорной кнопкой

Версия 1.5
– Добавлено управление яркостью
– Яркость дисплея и светодиода СО2 меняется на максимальную и минимальную в зависимости от сигнала с фоторезистора
Подключите датчик (фоторезистор) по схеме. Теперь на экране отладки справа на второй строчке появится величина сигнала
с фоторезистора. Пределы яркости устанавливаются в настройках прошивки.

ПОДРОБНОЕ ВИДЕО ПО ПРОЕКТУ

В данном видео показан полный и максимально подробный процесс разработки и изготовления устройства, а также обзор его возможностей и функций.

Понятные схемы, OpenSource прошивки с комментариями и подробные инструкции это очень большая работа. Буду рад, если вы поддержите такой подход к созданию Ардуино проектов! Основная страница пожертвовать – здесь.

СХЕМЫ, ПЕЧАТНЫЕ ПЛАТЫ

КОРПУСА ПОД 3D ПЕЧАТЬ

Несколько вариантов 3D-печатных корпусов для этого проекта с инструкциями по сборке есть в ветке обсуждения часов-метеостанции на форуме сообщества

МАТЕРИАЛЫ И КОМПОНЕНТЫ

Ссылки на магазины, с которых я закупаюсь уже не один год

Вам скорее всего пригодится:

Первые ссылки – в основном магазин Great Wall, вторые – WAVGAT. Покупая в одном магазине, вы экономите на доставке!

ПРОШИВКА И НАСТРОЙКА

Загружать прошивку желательно до подключения компонентов, чтобы убедиться в том, что плата рабочая. После сборки можно прошить ещё раз, плата должна спокойно прошиться. В проектах с мощными потребителями в цепи питания платы 5V (адресная светодиодная лента, сервоприводы, моторы и проч.) необходимо подать на схему внешнее питание 5V перед подключением Arduino к компьютеру, потому что USB не обеспечит нужный ток, если например лента его потребует. Это может привести к выгоранию защитного диода на плате Arduino. Гайд по скачиванию и загрузке прошивки можно найти под спойлером на следующей строчке.

ИНСТРУКЦИЯ ПО ЗАГРУЗКЕ ПРОШИВКИ

1. Если это ваше первое знакомство с Arduino, внимательно изучите гайд для новичков и установите необходимые для загрузки прошивки программы.

2. Скачайте архив со страницы проекта. Если вы зашли с GitHub – кликните справа вверху Clone or download, затем Download ZIP. Это тот же самый архив!

3. Извлеките архив. Содержимое папки libraries перетащите в пустое место папки с библиотеками Arduino C:/Program Files (x86)/Arduino/libraries/

4. Папку с прошивкой из firmware положите по пути без русских букв . Если в папке с прошивкой несколько файлов – это вкладки, они откроются автоматически.

5. Настройте прошивку (если нужно), выберите свою плату, процессор. Подключите Arduino к компьютеру, выберите её COM порт и нажмите загрузить.

6. При возникновении ошибок или красного текста в логе обратитесь к 5-ому пункту гайда для новичков – “Разбор ошибок загрузки и компиляции“.

Содержимое папок в архиве

  • libraries – библиотеки проекта. Заменить имеющиеся версии
  • firmware – прошивки для Arduino
  • schemes – схемы подключения компонентов

Как показал эксперимент, снаружи корпуса датчик температуры показывает на 0.5 градуса меньше, чем внутри! Нужно более удачно компоновать электронику, отводить и экранировать тепло от греющихся элементов…

Если дисплей показывает слишком тускло/на белом фоне
На плате драйвера дисплея (к которой подключаются провода) есть крутилка контрастности, с её помощью можно подстроить контраст на нужный. Также контрастность зависит от угла взгляда на дисплей (это же LCD) и можно настроить дисплей на чёткое отображение даже под углом “дисплей на уровне пупка, смотрим сверху”. А ещё контрастность сильно зависит от питания: от 5V дисплей показывает максимально чётко и ярко, тогда как при питании от USB через Arduino напряжение будет около 4.5V (часть падает на защитном диоде по линии USB), и дисплей показывает уже не так ярко. Вывод настраивайте крутилкой при внешнем питании от 5V!

Если датчик CO2 работает некорректно (инфа от Евгения Иванова)
Ну там в папке библиотеки сенсора в examples есть скетчи для калибровки. также ее можно запустить втупую замкнув на землю разъем “HD” на 7+ секунд.
Само собой вот прямо на улице на морозе этим заниматься не обязательно… можно просто в бутылку набрать свежего воздуха с датчиком внутри и запечатать. калибровка проводится минимум 20 минут..
По-умолчанию датчик поставляется с включенной автокалибровкой, которая происходит каждый день, и если датчик используется в невентелируемом помещении, то эта калибровка быстро уводит значения от нормы за горизонт, потому ее нужно обязательно отключать.
Документация.

Автокалибровка датчика CO2 отключена в скетче!

Если у вас не работает датчик BME280, скорее всего у него отличается адрес. В проекте используется библиотека Adafruit_BME280, у которой нет отдельной функции смены адреса, поэтому адрес задаётся вручную в файле библиотеки Adafruit_BME280.h почти в самом начале файла (лежит в папке Adafruit_BME280 в вашей папке библиотек, вы должны были её туда установить), у моего модуля был адрес 0x76. Как узнать адрес своего модуля BME280? Есть специальный скетч, называется i2c scanner. Его можно нагуглить, можно скачать с моего FTP. Прошиваете данный скетч, открываете порт и получаете список адресов подключенных к шине i2c устройств. Чтобы остальные модули вам не мешали – можно их отключить и оставить только BME280. Полученный адрес указываем в библиотеке, сохраняем файл и загружаем прошивку метео-часов. Всё!

Если отстают часы, проблема скорее всего в питании схемы. Если при смене блока питания на более качественный проблема не уходит, повесьте конденсатор по питанию RTC модуля (прям на плату на VCC и GND паять): обязательно керамический, 0.1-1 мкФ (маркировка 103 или 104, смотрите таблицу маркировок). Также можно поставить электролит (6.3V, 47-100 мкФ)

Источники:

http://zelectro.cc/arduino_anemometer

http://arduinoplus.ru/delaem-anemometr-arduino/

http://alexgyver.ru/meteoclock/

http://digitrode.ru/computing-devices/mcu_cpu/2010-izmeritel-ultrafioletovogo-izlucheniya-na-osnove-arduino-i-uf-datchika-uv30a.html

Ссылка на основную публикацию