Мобильное зарядное устройство для велосипедов своими руками

Зарядное устройство для велосипеда

8 минут Автор: Михаил Скворцов 501

Велосипед, который скоро отпразднует свое 200-летие, является, пожалуй, самым живучим транспортным средством. Детище барона фон Дреза, запатентованное в 1818 году, стало дедушкой современного байка. В эти годы Джордж Стефенсон ещё только проектировал свой знаменитый паровоз «Ракета», а самой быстрой наземной скоростью оставалась быстрота, с которой передвигается лошадь.

Пар в качестве главной движущей силы продержался около ста лет, пока ему на смену не пришло электричество и двигатели внутреннего сгорания. Затем человечество вступило в ядерную и космическую эру, а сейчас наиболее перспективным считается использование водорода. Но байк, несмотря на свою простоту, не исчез. Наоборот, с каждым годом он набирает всё большую популярность.

Как и любой современный транспорт, велосипед в своём развитии не стоит на месте. Создание всё более совершенных и миниатюрных электронных компонентов позволило устанавливать на него самые различные дополнительные приборы. Это разнообразные велокомпьютеры, датчики, велоакустика и оптика, а также приспособления, призванные облегчить вращение педалей. Современная промышленность не оставила без внимания и такой неотъемлемый атрибут современной жизни, как мобильные средства связи, то есть телефоны и смартфоны. В последнее время на рынке появилось большое количество велосипедных зарядных устройств для этих компактных гаджетов.

Основные компоненты велосипедных зарядок

Велосипедная зарядка – это устройство, преобразующее механическую или другую энергию, возникающую при движении байка, в электричество, которое затем применяется для перезарядки аккумуляторов портативных электронных приборов. Чаще всего она используется для зарядки телефона, хотя, в зависимости от выходной мощности, типа разъёма и прочих параметров, может подойти и для прочих гаджетов – цифровых камер, аудиоплееров, планшетов, GPS-навигаторов и многого другого.

Зарядное устройство обычно состоит из преобразователя энергии, встроенного аккумулятора и контроллера, а также подставки-держателя для смартфона или другого прибора. В качестве преобразователя энергии могут выступать механические генераторы различных типов, ветрогенераторы или солнечные батареи. Генератор или какой-либо иной источник энергии вырабатывает электричество, контроллер служит выпрямителем и управляет процессом зарядки аккумулятора, от которого затем перезаряжается сам телефон. Существуют модели, в которых нет встроенного аккумулятора. В таком случае зарядка вашего гаджета будет возможна только во время движения велосипеда, поэтому для удобства использования, скорее всего, придётся покупать отдельный пауэрбанк.

Виды велосипедных зарядок

Самым важным элементом зарядки является преобразователь энергии, и при классификации зарядных устройств будет логично отталкиваться от их типа. Наиболее распространены следующие виды велосипедных зарядок для телефона:

Зарядка на основе механического генератора. Эти генераторы также часто называют устаревшим термином «динамо-машина». Есть несколько видов таких устройств: с генератором, встроенным в переднюю или заднюю втулку велосипеда; с навесной динамо-машиной; с генератором, работающим на основе фрикционной передачи.

Зарядки со встроенным генератором, или динамо-втулки, на сегодняшний день являются самыми надёжными. Они работают тихо, не зависят от погодных условий и не требуют особого ухода. В то же время они дороги, довольно много весят и вызывают дополнительное сопротивление качению. Если ваш велосипед не был изначально оборудован динамо-втулкой, то для её установки придётся переспицевать колесо, что весьма непросто.

Внешние навесные генераторы крепятся к втулке или каретке снаружи с помощью простого фиксатора. Их установка не требует больших затрат времени и сил, и справиться с ней сможет практически любой. Такие всемирно известные компании, как Nokia и Shimano, в последнее время отдают предпочтение именно подобной конструкции.

Третий вид – генераторы на основе фрикционной передачи – называют также «бутылочными» из-за характерной формы. Это самые простые динамки. В них для передачи энергии вращения велосипедного колеса используется ролик, который прижимается к покрышке. Зарядное устройство на основе такого генератора остаётся наиболее дешёвым, распространённым и лёгким в установке, но имеет ряд существенных недостатков.

Бутылочная динамо-машина издаёт довольно сильный шум, трение о покрышку приводит к её ускоренному износу. В сырую погоду эффективность генератора существенно снижается из-за проскальзывания ролика по поверхности покрышки. Кроме того, нужно постоянно следить за тем, чтобы он находился в правильном положении, обеспечивающем наилучший контакт. Ослабленные в результате тряски крепёжные винты могут привести к попаданию динамки в спицы колеса, что тоже не добавляет удовольствия от её использования.

Все вышеперечисленные зарядки имеют один существенный недостаток, заложенный в их конструкции, – для производства электричества они используют механическую энергию, возникающую при движении велосипеда. Потери при таком способе неизбежны, что вызывает снижение КПД и, в конечном счёте, делает их менее эффективными.

Велосипедная зарядка для телефона на солнечных батареях

Появление на рынке современных высокоэффективных солнечных панелей делает зарядные устройства, созданные на их основе, весьма удобными и недорогими. Основные компоненты, названные нами раньше, остаются прежними. Это генератор, контроллер и аккумулятор, только в качестве источника энергии теперь выступает не динамо-машина, а солнечная батарея. Фотоэлектрические преобразователи на основе полупроводников позволяют преобразовывать солнечную энергию в электрический ток, избегая ненужных потерь, возникающих в механических устройствах. Подобное устройство заряжает телефон или другой прибор вне зависимости от скорости велосипеда и не вызывает дополнительного сопротивления при езде. Солнечная батарея может размещаться где угодно: на раме, руле, багажнике, шлеме и даже на одежде. Единственное ограничение – зависимость от интенсивности освещения. В пасмурную погоду или ночью такие зарядки работать не будут.

Ветрогенератор

Еще один источник энергии. В этом случае для производства электричества используется поток воздуха, вращающий лопасти миниатюрного генератора. Зарядки, использующие этот принцип, работают только тогда, когда есть поток встречного воздуха, то есть при движении велосипеда, поэтому необходимо использование отдельного пауэрбанка. Такое устройство можно без труда собрать своими руками в домашних условиях, а в качестве ветрогенератора подойдёт даже вентилятор от компьютера.

Следует также отметить, что подобные зарядки начинают вырабатывать ток только при достижении определённой скорости, и при неспешной езде практически бесполезны.

Бесконтактный генератор

Последний из рассматриваемых типов, который применяется в велосипедных зарядках. На ободе колеса или спицах размещаются постоянные магниты, а на вилке – катушки. Также необходим преобразователь переменного тока в постоянный и аккумуляторы, накапливающие электроэнергию. Таким образом, в роли генератора выступает само колесо, и не возникает нужды в дополнительном корпусе. Вес конструкции и механические потери снижены до минимума. Правильно подобрав компоненты, можно получить на выходе ток, вполне достаточный для зарядки портативной электроники. Благодаря своей простоте, такая схема популярна среди любителей-самодельщиков, хотя существует достаточное количество промышленно изготовленных образцов.

Как видно, существует довольно большое количество разнообразных устройств, с помощью которых можно зарядить от велосипеда свой телефон. Все они имеют определённые плюсы и минусы. При выборе стоит обратить внимание на такие факторы, как ёмкость аккумулятора, лёгкость установки, наличие разъёмов, соответствующих именно вашему девайсу, а также вес и цену.

Крепление для телефона должно надёжно фиксировать его, ведь будет очень обидно, если дорогой смартфон выпадет по дороге и разобьётся. Выбирайте то, что подходит вам больше всего, и вы всегда будете на связи.

USB зарядное устройство для велосипедов своими руками

USB зарядное устройство для велосипедов

Эта схема была разработана для добавления USB-порта для зарядки велосипеда для зарядки мобильного телефона. Входное питание для схемы производится динамо (6 В, 3 Вт динамо) в велосипеде. Схема использует несколько компонентов, которые помогают уменьшить размер, вес и стоимость устройства.

Схема и работа Схема основана на LM2596-5.0 (IC1). Его конфигурация с небольшими изменениями, как правило, отражает рекомендации, включенные в таблицу данных Texas Instruments LM2596-5.0. Микросхема обеспечивает все активные функции для понижающего (понижающего) переключающего регулятора, способного управлять нагрузкой 3 А с отличной линией и регулированием нагрузки.

Выход регулятора 5В. Он работает с частотой переключения 150 кГц, что позволяет использовать компоненты фильтра меньшего размера, чем это требуется для традиционных низкочастотных переключающих регуляторов. На рис. 1 показана принципиальная схема велосипедного USB-зарядного устройства.

Переменное напряжение, генерируемое динамо, преобразуется в постоянный ток с помощью двухполупериодного мостового выпрямителя, содержащего диоды с барьерным выпрямителем Шоттки с D1 по D4 и фильтрующий электролитический конденсатор (C1). Выходной сигнал мостового выпрямителя, который заряжается до пикового значения переменного напряжения (почти 10 В), является входом для переключающего стабилизатора LM2596-5.0 для обеспечения регулируемого выхода 5 В (постоянного тока), который подходит для зарядки мобильных устройств с помощью разъема USB ,

5-миллиметровый светодиод (LED1) в цепи показывает состояние выхода. Соединение обратной связи FB (контакт 4 на IC1) подключено непосредственно к выходному напряжению на электролитическом конденсаторе C2. Как и у всех переключающих регуляторов, C2 должен иметь низкий рейтинг ESR (эквивалентное последовательное сопротивление). Кроме того, индуктор 33 мкГн (L1) должен быть рассчитан на постоянный ток не менее 1А. Динамо-выход подключен к цепи переключателем S1.

Сборка и тестирование. Односторонняя печатная плата фактического размера USB-зарядного устройства для велосипеда показана на рис. 2, а расположение компонентов – на рис. 3. Соберите схему на плате таким образом, чтобы вы могли подключить мобильный телефон через разъем USB.

Загрузите PDF-файлы с печатной платой и компоновкой компонентов: нажмите здесь

LM2596 (IC1) доступен в стандартной упаковке TO-220, а также в упаковке TO-263 для поверхностного монтажа. Компоновка печатной платы для упаковки TO-220. Вся схема может быть легко построена даже на перфорированной макетной плате. Выход USB впаян прямо в макетную плату. Тем не менее, очень важно соблюдать правильную полярность при подключении к выходному разъему USB. После Сборка и тестирования, поместите устройство в подходящую ABS / акриловую коробку.

Как зарядить любое USB устройство с помощью велосипеда

Изначально, мы строили теории по разработке и осуществимости использования рекуперативных тормозных систем на велосипедах
для создания мобильного источника питания, чтобы продлить срок работы электронных устройств, перевозимых велосипедистом.

Во время экспериментов, эти системы оказались неспособны одновременно выполнять сразу две функции.

Тем самым, наша группа решила отказаться от функций устройства по торможению и целиком сосредоточиться на разработке системы постоянной зарядки. После конструирования данной системы, она оказалась полностью способной выполнять поставленные задачи.

Разработка схемы

Прежде всего, нам пришлось разработать цепь, которая могла бы получить напряжение около 6 В от мотора, сохранить заряд, а затем преобразовывать его в 5 В, которые требуются для устройств USB.

Цепь, которую мы разработали, повторяет функции зарядника для USB — MintyBoost, изначально разработанного Лимором Фридом из Адафрут Индастриз. MintyBoost использует батарейки типа АА для зарядки портативных электронных устройств. Наша цепь, разработанная отдельно от этого устройства, заменяет батарейки и передает напряжение на MintyBoost. 6-и вольтовое напряжение от мотора снижается до 2.5 В, что позволяет мотору заряжать BOOSTCAP (140 Ф), который в свою очередь передает напряжение на схему MintyBoost. Ультраконденсатор сохраняет заряд, чтобы обеспечить постоянную подзарядку USB устройства, даже когда велосипед стоит на месте.

Выбор мотора оказался боле сложным. Моторы подороже обеспечивают надлежащий крутящий момент, необходимый для тормозного момента, но цена у них непомерная. Необходимо было найти другое решение для создания эффективного и доступного устройства. Проект был переработан в рамках создания зарядного устройство постоянного действия и из всех подходящих моторов Maxon стал бы лучшим, ввиду своего небольшого диаметра.

Он также обеспечивает подачу 6 В, тогда как другие моторы выдавали до 20 В. Для подобных моторов возникнет серьезная проблема с перегревом.

Мы решили остановить свой выбор на Мaxon 90 — прекрасном моторе, несмотря на его цену – 275 долларов. (Для желающих самим повторить данный проект будет достаточно и более дешевого мотора).

Мы прикрепили свой мотор вблизи от крепежа задних тормозов, прямо на велосипедной раме, положив кусочек линейки между рамой и мотором в качестве прокладки, и притянув мотор двумя хомутами.
Электропроводка

Мы рассматривали несколько вариантов проводки от мотора к схеме: зажимы-«крокодилы» в качестве импровизации, телефонный кабель и акустический кабель

«Крокодилы» оказались хороши в качестве импровизированного дизайна и для тестирования, но не были достаточно надежными для окончательного варианта.

Телефонный кабель оказался хрупким и неудобным в работе.

Акустический кабель тестировался из-за своей прочности и тем самым стал предпочтительным.

Хотя сам провод был многожильным, он оказался более надежным ввиду большого диаметра.

Затем мы просто прикрепили провод к раме, с помощью хомутовых стяжек.

Сама схема!

Монтаж схемы был самой сложной частью работы. Напряжение мотора сначала поступает на регулятор напряжения, который позволяет держать непрерывный ток, силой до 5 А – это больше, чем обычно пропускают другие регуляторы. После него напряжение уменьшается до 2,5 В – что является максимальным напряжением, которое может безопасно накапливать BOOSTCAP. Как только BOOSTCAP накапливает 1,2 В – его мощности достаточно, чтобы MintyBoost подал напряжение в 5 В для зарядки устройств.

На выходные провода мы припаяли пятиамперный диод для избежания случаев, когда мотор начинает крутиться, используя накопленный заряд.

Мы использовали конденсатор емкостью 2200 мкФ для выравнивания потока мощности, поступающего на регулятор напряжения.

Использованный нами регулятор напряжения – LM338, является настраиваемым, в зависимости от того, как вы его разместите, что видно из принципиальной схемы. В нашем случае, связка двух резисторов – 120 Ом и 135 Ом – подключенные к регулятору, определяют выходное напряжение. Их мы использовали для снижения напряжения с примерно 6 В до 2,5 В.

Затем, эти 2,5 В идут на зарядку «ультраконденсатора» BOOSTCAP – на 140Ф, 2,5В, произведенного Maxwell Technologies. Наш выбор обусловлен тем, что его большая емкость позволит поддерживать процесс подзарядки, даже если велосипед остановится на красный свет.

Следующей частью нашей схемы является то, что вам, безусловно, всем знакомо — MintyBoost от Adafruit. Его мы использовали для снятия 2,5 В с конденсатора и их трансформации в постоянные 5 В – стандартные для USB устройств. MintyBoost использует MAX756 – пятивольтовый преобразователь напряжения, объединенный с индуктором на 22 мкГн. Как только через «ультраконденсатор» проходит 1,2 В — MintyBoost начинает выдавать 5В.

Наша схема дополняет работу, MintyBoost, зарядника для USB, изначально разработанного Лимором Фридом из Adafruit Industries . MintyBoost использует батарейки типа АА для зарядки портативных электронных устройств. Наша отдельно сконструированная схема заменяет батарейки и передает напряжение на MintyBoost. Наша схема снижает 6В, поступающие с мотора до 2,5В, что позволяет мотору заряжать BOOSTCAP (140Ф), который в свою очередь передает напряжение на схему MintyBoost. «Ультраконденсатор» сохраняет напряжение для постоянного заряда USB устройств, даже когда велосипед стоит на месте.

Корпус

Корпус необходим для предохранения схемы от внешних воздействий. Мы выбрали трубку их ПВХ – диаметром 6см, длиной 18см — и концевые колпачки. Хотя эти размеры велики, по сравнению с габаритами самой схемы, однако из-за этого работать с ней удобнее. Производственная модель была бы гораздо меньше. ПВХ был выбран из-за своей прочности, почти прекрасную стойкость к атмосферным воздействиям, аэродинамической стойкости и низкой цены. Был также проведен ряд экспериментов с контейнерами из углеволокна, пропитанного эпоксидной смолой. Этот материал оказался одинаково прочным и легким. Однако, его создание получилось чрезвычайно сложным и отнимает много времени.

Тестирование

Мы испытывали два различных типа конденсаторов – BOOSTCAP и суперконденсатор.

Первый график отражает использование суперконденсатора, который встроен в схему так, что когда мотор вращается, конденсатор заряжается. Мы не использовали его, потому что, хотя суперконденсатор заряжается с огромной скоростью – для нас он также слишком быстро разряжается. Красная линия показывает вольтаж мотора, а синяя отображает напряжение суперконденсатора, тогда как зеленой линией указывается напряжение на порте USB.

Второй график показывает информацию о применении BOOSTCAP. Красной линией отображается напряжение мотора, синей – напряжение ультраконденсатора, зеленой – напряжение на порте USB. Мы выбрали именно ультраонденсатор, потому что, как показывает тестирование, ультраконденсатор продолжает удерживать заряд, даже после остановки велосипеда. Причина прыжка напряжения на USB в том, что ультраконденсатор достиг порога напряжения, необходимого для включения MintyBoost.

Оба теста проводились в течение 10 минут. Велосипедист крутил педали в течение 5 минут, затем мы следили за изменением напряжения на протяжении последующих 5 минут.

Последняя картинка – снимок с Google Earth того места, где проводились тесты. Данная картинка показывает, что стартовали мы от школы, затем проехали 2 круга по Leavegood Park, покрыв общую дистанцию в 1 милю. Цвета на карте соответствуют определенной скорости велосипедиста: фиолетовый – примерно 28,9 м/ч, синий – 21,7 м/ч, зеленый – 14,5 м/ч, а желтый – 7,4 м/ч.

Простой электрогенератор для зарядки телефона на велосипед

Вы знали что во время езды на велосипеде можно заряжать свой телефон? Сейчас The Wrench покажет нам, как сделать простой электрогенератор, который сможет вырабатывать достаточно энергии для поддержания заряда вашего телефона во время катания на велосипеде.

Смотрим видео самодельного электрогенератора:

Для того, чтобы сделать такой электрогенератор нам понадобится:
1. Ненужная автомобильная зарядка для телефона ссылка
2. ОТГ шнур или usb разъём ссылка
3. Два небольших деревянных бруска
4. Электрический мотор 12v ссылка
5. Пластиковые стяжки

1. Берём брусок и приклеиваем к нему мотор. Затем сверлим отверстия и крепим мотор на стяжки.







2. Разбираем ненужную автомобильную зарядку. Отрезаем лишние провода, а на место выходящих проводов припаиваем свои. Незабываем микросхему припаять к мотору. Припаивать нужно провода от разъёма, который вставлялся в прикуриватель. Usb разъём паяем на выход микросхемы. В этот разъём будем вставлять шнур, через который и будет заряжаться телефон.











3. Берём ещё один брусок и сверлим 3 отверстия.











4. Всю эту конструкцию крепим на велосипед около колеса. Вал нашего генератора (резиновое колёсико) должен прикасаться к колесу велосипеда. Пробуем крутить педали. Если телефон не заряжается, значит вы что-то сделали не так. Будьте осторожны! При первом тестировании устройства измерьте напряжение на разъёме usb! Оно не должно превышать 5В.

Источники:

http://izobreteniya.net/usb-zaryadnoe-ustrojstvo-dlya-velosipedov-svoimi-rukami/

http://velolife.by/velosamodelki/2017/11/kak-zaryadit-lyuboe-usb-ustrojstvo-s-pomoshhyu-velosipeda/

http://usamodelkina.ru/12466-jelektrogenerator-dlja-zarjadki-telefona-na-velosiped.html

http://3d-diy.ru/wiki/arduino-moduli/wi-fi-module-esp-32/

Ссылка на основную публикацию