Микроконтроллеры: что это такое и зачем нужны arduino+

Микроконтроллеры Ардуино для чайников

Ардуино – один из популярнейших микроконтроллеров для создания разнообразных автоматизированных систем. Благодаря множеству библиотек и вспомогательных модулей на любой вкус, будь то датчик движения или wi-fi адаптер, плата стала любимцем конструкторов.

Сейчас можно увидеть большое разнообразие изделий на основе Ардуино и столько же инструкций по тому, как и что делать. Но давайте разберёмся, что собой представляет данный микроконтроллер и к чему стоит быть готовым новичкам. А также узнаем, какой язык программирования используется в основе большинства библиотек.

Характеристики МК Arduino

В зависимости от того, какой микроконтроллер Ардуино вы приобрели, его характеристики будут различаться. Так, в Arduino micro pro чуть больше пинов и другой объём постоянной памяти, что позволяет подгрузить дополнительные библиотеки.

Но, в целом, любой микроконтроллер этой системы представляет собой простое AVR устройство с уже заготовленной прошивкой. Пользователю остаётся лишь добавить подходящие библиотеки или использовать уже имеющиеся. После чего можно моментально приступать к работе. На всех платах имеется USB-UART порт для упрощения работы с устройством.

Достоинствами Ардуино являются:

  1. Библиотеки, которые создаются не только авторами платы, но и сообществом. Благодаря этому можно найти подходящий инструментарий под любую задачу. Но здесь кроется и главный недостаток. Никто не контролирует качество кода, и в результате большую часть библиотек из свободного доступа вам придётся вручную модифицировать или переписывать десятки раз. Поэтому многие предпочитают самостоятельно написать код и базовый функции, если есть такая возможность.
  2. Небольшие размеры Ардуино микро. Это позволяет создавать профессиональные платы, не занимающие большого пространства в корпусе конечного изделия. А габариты крайне важны во всех сферах, от умного дома до создания собственной теплицы.
  3. Большое количество модулей. На микроконтроллер Arduino вы найдёте любой необходимый модуль. Будь то датчик дыма или освещённости, и даже небольшой динамик. Помимо этого, можно и сэкономить, ведь периферию создаёт само сообщество, благодаря чему можно покупать дополнительные микроконтроллеры за копейки.
  4. Низкий порог вхождения. Чтобы обучиться работе с Ардуино, вам потребуется парочка свободных вечеров. Даже если ранее вы не занимались радиотехникой и никогда не паяли, а программирование для вас остаётся необъяснимой магией. Дело в том, что большая часть общественных библиотек написана наподобие высокоуровневых языков программирования. Для управления системой достаточно знать английский на разговорном уровне и хоть примерно представлять, на что вообще способна Ардуино микро про.

Сам микроконтроллер строится на одной схеме, на ней присутствует несколько основных элементов, о которых мы расскажем чуть ниже. В зависимости от выбранного модуля, может различаться объём постоянной памяти и количество пинов. Последнее влияет на то, сколько устройств вы сможете подсоединить к своему микроконтроллеру. Программная часть реализована на низкоуровневом языке программирования, что позволяет с точностью управлять любыми телодвижениями платы, вплоть до малейших сигналов и написания полноценных самообучающихся нейросетей.

Плата Ардуино pro mini и сенсор расстояния

Вся информация с модулей и датчиков передаётся на центральный микроконтроллер, он выводит её в консоль и обрабатывает согласно заложенному скрипту.

Или же, чтобы огонёк на кнопке запуска горел красным, когда устройство включено. Всё это также контролируется и настраивается на программном уровне.

Конечно, если вы никогда раньше не имели опыта с программным кодом и не знаете базовых алгоритмов – лучше пользоваться заготовленными библиотеками. А вот для программистов-инженеров на Ардуино полностью развязаны руки, о чём мы поговорим чуть ниже. Но, для начала, давайте разберём аппаратную часть.

Аппаратная часть Arduino

Для начала стоит уяснить, что собой представляет микроконтроллер. По логике, это небольшое устройство, к которому подключаются все остальные элементы системы. Ардуино должен координировать их работу при помощи прописанных в нём скриптов, выдавая соответствующие электрические сигналы. Для стандартного МК Ардуино сигналом является 5 вольт – это единичка, а отсутствие сигнала – нолик.

Именно на таком принципе построено программирование двоичным кодом. Но от такой системы мы уже давно ушли, и потому к устройству можно подключать трансформаторы переменного тока и дополнительные резисторы, ведь некоторым модулям требуется ток в 3.2-4.7 Вольт.

Соответственно, аппаратная часть Ардуино в стандартной комплектации представлена чипом с постоянной памятью, набором из резисторов и транзисторов, а также несколькими пинами. Такая простая конструкция позволяет пользователю самому навешивать «улучшения» по необходимости.

С «коробки» в микроконтроллер устанавливается стандартная прошивка, способная распознавать базовые АТ команды. Пользователь может переустановить её или перепрошить Ардуино по желанию, но стоит учитывать, что без должного опыта вы можете получить бесполезную и неработающую плату.

Как несложно догадаться, изначально Ардуино – это лишь инструмент, который позволяет координировать работу всей системы. А делает он это при помощи встроенных в него библиотек, которые можно устанавливать в систему дополнительно, по необходимости. Вплоть до того, что вы можете поставить вспомогательную карту памяти, если не хватает места. А сами же библиотеки написаны на низкоуровневом C++, который обеспечивает полный контроль над работой микроконтроллера, но имеет и ряд весомых недостатков, о которых мы и поговорим ниже.

Язык программирования Arduino

Ардуино полностью построен на низкоуровневом языке С++, у которого имеются как свои почитатели, так и ненавистники. Перед тем, как разобрать его достоинства и недостатки, стоит понять, что любой мультипарадигмальный ЯП (язык программирования, способный решать различные задачи, используя базовые парадигмы) является лишь инструментом.

Даже самый неудобный и кривой ЯП в руках хорошего специалиста способен на всё, чему существуют тысячи подтверждений. Но если рассматривать плюсы С++, то мы получим:

  1. Мультипарадигмальность языка. Вы можете применять как ООП, так и более сложные его вариации, и писать простейшие функции с переменными. На С++ построены все базовые алгоритмы сортировки и поиска, а соответственно, легкореализуемы.
  2. Большое количество информации. С++ применяется во всех сферах программирования, от создания игр и программ до написания базовых прошивок для процессоров и плат. Именно последние нам и нужны на Ардуино.
  3. Язык является крайне пластичным. В отличие от Java, поклонники которого часто критикуют отсутствие «подушек безопасности» этого ЯП, С++ даёт вам полную свободу, вплоть до контроля ресурсов, расходуемых на каждую операцию.

Из его главных достоинств выплывают и некоторые недостатки:

  1. Отсутствие «подушек безопасности». Другие языки всячески защищают пользователя, не давая компилятору обработать код, пока не проверят тысячи параметров. И сюда входит не только семантика языка, но и переменные, расход памяти и некоторые элементы алгоритмов. Это вынуждает подстраиваться под особенности компиляторов и делать «костыли», но вот отсутствие такой защиты заставляет вас часами выискивать ошибку в функции.
  2. Нет нормального отображения ошибки. Даже в современных средах программирования на С++ поиск одной ошибки может занять у вас несколько часов, пока не выяснится, что по какой-то причине цикл с предусловием не захотел воспринимать «!=», как отрицание. Или вы случайно создали непрерывную рекурсию, забыв написать один «return». И когда объёмы кода увеличиваются, таких мелких ошибок накапливается масса, а вспомнить каждую функцию, написанную для библиотеки, и уж тем более найти, какая из них конфликтует с новой, не так и просто. Здесь не помогает ни хорошо организованный DOM, ни своевременные комментарии.

Однако, если вас всё же не устраивают особенности этого языка, то всегда можно испытать С99, применяемый на микроконтроллерах конкурентов. Там все недостатки усугубляются в разы, а библиотеки функций становятся поистине непонятными.

Что может микроконтроллер Arduino

По сути, микроконтроллер Ардуино способен лишь посылать электрические сигналы и принимать их от модулей, подсоединённых к нему. Однако, если рассматривать микроконтроллер в другой перспективе, то он способен практически на всё, достаточно заложить в него качественный код и подключить нужные датчики.

Интересные проекты на базе МК Arduino

На Ардуино уже создано тысячи проектов, а многие инженеры ведут собственные блоги или каналы на YouTube, где вы можете ознакомиться с их творчеством. Из интересных идей, стоит отметить следующие:

  1. Умный дом. Практически каждый элемент умного дома можно создать собственными руками. От автоматических штор и дверей до сигнализаций и регулируемого освещения.
  2. Кодовые замки. Проект простой, и подойдёт для новичков. Достаточно использовать любой датчик и сделать замки, реагирующие на определённый ритм постукиваний или же на приближение вашего смартфона.
  3. Автоматизированные теплицы.

Проектов на деле в тысячи раз больше, вам остаётся лишь подключить свою фантазию, а инструментарием послужит Ардуино.

Микроконтроллеры: что это такое и зачем нужны

Сегодня я хотел бы написать о микроконтроллерах в целом, чтобы свои знания подтянуть и заодно другим рассказать.

Для работы с микроконтроллерами, такими как Ардуино или Iskra JS и подобными, нужны дополнительные знания, которые мы постепенно будем познавать.

Что такое микроконтроллеры?

Микроконтроллер представляет собой микросхему, которая используется для управления электронными устройствами. В типичном микроконтроллере имеются функции и процессора, и периферийных устройств, а также содержится оперативная память и/или ПЗУ (постоянное запоминающее устройство). Если говорить кратко, то микроконтроллер – это компьютер, функционирующий на одном кристалле, который способен выполнять относительно несложные операции.

Микроконтроллеры широко используются в вычислительной технике (процессоры, материнские платы, контроллеры дисководов, накопители HDD/FDD), бытовой электронике (стиральные машины, микроволновые печи, телефоны и т.д.), в промышленности и т.д. Рассмотрим, как проходит подключение и управление микроконтроллером, а также другие нюансы, связанные с ними.

Подключение микроконтроллера

Нижеописанная схема является упрощенным вариантом подключения микроконтроллера AVR.

По-хорошему, необходимо добавить еще несколько дополнительных внешних элементов в схему.

Упрощенная схема подключения микроконтроллера

Провод, который указан на схеме пунктиром, использовать не обязательно в том случае, если питание микроконтроллера идет от внешнего источника.

Вывод AREF используется как вход для опорного напряжения АЦП – сюда подается напряжение, относительно которого будет высчитываться АЦП. Допустимо использование внутреннего источника опорного напряжения на 2.56В, или же использовать напряжение от AVCC.

АЦП (Аналого-цифровой преобразователь) — электронное устройство, преобразующее напряжение в двоичный цифровой код

На вывод AREF рекомендуется подключить конденсатор, который позволит увеличить качество напряжения АЦП и, тем самым, позволит провести правильные измерения АЦП. Между AVCC и GND установлен конденсатор и дроссель, а между GND и VCC установлен керамический конденсатор с емкостью 100 нФ (поближе к выводам питания схемы) для сглаживания кратких импульсов помех, образующихся в результате работы микросхемы.

Также между GND и VCC устанавливается ещё один конденсатор с емкостью в 47 мкФ для того, чтобы сгладить возможные броски напряжения.

Управление микроконтроллером

Микроконтроллеры AVR оснащены Гарвардской архитектурой. Каждая из областей памяти располагаются в своем адресном пространстве. Память данных в контроллерах осуществляется посредством регистровой, энергонезависимой и оперативной памяти.

Микроконтроллер AVR

Регистровая память предусматривает наличие 32 регистров общего назначения, которые объединены в файл, а также служебные регистры для ввода и вывода. И первые, и вторые располагаются в пространстве ОЗУ, однако не являются его частью.

В области РВВ (регистров ввода и вывода) находятся различные служебные регистры – состояния, управления микроконтроллером и т.д., а также регистры, которые отвечают за управление периферийных устройств, являющихся частью микроконтроллера. По сути, управление данными регистрами и является методом управления микроконтроллером.

Устройства на микроконтроллерах

Микроконтроллеры AVR являются простыми в использовании, имеют низкую потребляемую мощность и высокий уровень интеграции.

Как правило, такие микроконтроллеры могут использоваться на самых разных устройствах, в том числе системах общего назначения, системах оповещения, для ЖК-дисплеев, плат с ограниченным пространством.

Также они используются для измерителей уровня заряда аккумулятора, аутентификации, в автомобильной электронике, для защиты от короткого замыкания и перегрева и т.д. Кроме промышленных целей, микроконтроллеры могут использоваться (и чаще всего используются новичками) для создания следующих устройств:

  • Регистратор температуры на Atmega168;
  • Кухонный таймер на Attiny2313;
  • Термометр;
  • Измеритель частоты промышленной сети на 50 Гц;
  • Контроллер светодиодного стоп-сигнала на Attiny2313;
  • Светодиодные лампы и светильники, реагирующие на температуру или звук;
  • Электронные или сенсорные выключатели.

Отметим, что для разных устройств используются разные модели микроконтроллеров. Так, 32-разрядные микроконтроллеры AVR UC3 (а также XMEGA, megaAVR, tinyAVR и т.д.) подойдут для систем общего назначения с технологиями picoPower, QTouch, EEPROM, системами обработки событий и самопрограммированием.

Микроконтроллеры для начинающих

Если вы собираетесь программировать микроконтроллеры, такие как Ардуино, например, а также собирать устройства, которые предусматривают их наличие в схеме, необходимо учитывать некоторые правила и рекомендации:

  • Перед решением любых задач следует делить их на более мелкие, вплоть до базовых действий.
  • Не следует пользоваться кодогенераторами и прочими “упрощающими” материалами, хотя бы на начальных этапах.
  • Рекомендуется изучить язык С и Ассемблер – это упростит понимание принципа работы микроконтроллеров и программ.

Для того, чтобы новичок мог заниматься микроконтроллерами, рекомендуется изучать базовые материалы. К таким материалам можно отнести следующие книги:

  • “Применение микроконтроллеров AVR: схемы, программы и алгоритмы” Баранов В.Н., 2006 год,
  • “Микроконтроллеры AVR: вводный курс”, Дж. Мортон, 2008 год,
  • “Программирование микроконтроллеров ATMEL на языке С” Прокопенко В.С, 2012 год.

Данные книги являются практическим руководством, в котором затрагиваются аспекты и основы цифровой логики, а также рассматриваются примеры программ для микроконтроллеров, написанных на языке С с различными имитаторами схем, компиляторами и средами.

Что такое Arduino

Arduino — это семейство программируемых микроконтроллеров для легкого создания средств автоматики и робототехники. Звучит сложно, но на деле это не так. Для использования ардуино не нужно иметь специализированное оборудование (кроме самого микроконтроллера). Так же нет необходимости в профильном образовании по электротехнике или программированию. Даже новичок сможет разобраться и собрать своего робота, 3D-принтер или систему умного дома.

Ардуино имеет полностью открытую архитектуру. Это значит, что любой может производить данные микроконтроллеры, а также создавать новые на основе уже существующих разновидностей. Поэтому есть множество производителей во многих странах мира. Первые представители семейства этих микроконтроллеров были разработаны в Италии. Позже производство появилось и в Китае, что сделало Arduino более дешевым и распространенным. Более подробно об ардуино и истории создания вы можете почитать на википедии.

Ардуино — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Для того что бы начать нужен только сам микроконтроллер и компьютер с USB портом. Компьютер есть практически у всех, а микроконтроллер можно купить по цене от 100 рублей. Конечно, что бы создать действительно сложное и функциональное устройство потребуются дополнительные детали такие как: моторчики, разнообразные датчики, провода, кнопки, светодиоды, регуляторы и тому подобные. К счастью стоит это все дешево, а так же детали можно найти в ненужных или сломанных устройствах.

Платы Arduino

Почему Arduino становится такой популярной

Совсем недавно еще никто не слышал об Ардуино. И до сих пор многих отпугивают слова: программируемый микроконтроллер, одноплатный компьютер, система для разработки устройств автоматизации. На деле все гораздо проще. Именно благодаря простоте и дешевизне Ардуино получила такую популярность. Существуют и другие проекты со схожими целями. Но ардуино обладает рядом преимуществ:

  1. Низкая стоимость. Ардуино можно купить всего за 2$
  2. Кроссплатформенность. Программное обеспечение ардуино очень универсально. Есть версии для большинства операционных систем.
  3. Arduino IDE. Это очень простая в освоении и удобная в использовании среда разработки. Она устанавливается и настраивается всего за несколько кликов мышкой.
  4. Открытый исходный код. Это позволяет людям создавать свои собственные функции и библиотеки. В интернете огромное количество готовых программных решений для любых целей. Вам не придется самостоятельно разбираться в принципах действия модулей. Вы можете скачать и установить готовую библиотеку, написанную для конкретного модуля, и использовать ее.

Аппаратная часть Arduino

Существует множество версий этого микроконтроллера. Они отличаются друг от друга размерами, фирмой производителем, частотой процессора, количеством встроенной памяти, количеством контактов вывода/ввода. Так например есть самая популярная ардуинка — Arduino UNO.

Она подходит практически для всех целей, в том числе и для освоения микроконтроллеров. Есть более мощная версия Arduino MEGA, обладающая большей тактовой частотой процессора, увеличенной памятью, бОльшим количеством контактов и более внушительным размером.

Есть и более маленькие версии такие как Arduino Mini и Arduino Pro.

Описание самых популярных плат вы найдете на странице «Платы»

Что можно подключить к Arduino

К пинам микроконтроллера можно подключать огромное количество разнообразных устройств и датчиков. Ардуино умеет считывать значения датчиков, обрабатывать их и управлять механизмами в соответствии с установленной прошивкой. Например: можно подключить датчик света и реле. Когда освещение в помещении становится ниже заданного уровня ардуино открывает реле. Это самый простой пример использования. Ниже не полный перечень устройств и датчиков, которые можно подключить:

Переферийные устройства

  • Кнопки, переключатели, сенсорные панели
  • Светодиоды
  • Динамики и микрофоны
  • Коллекторные, безколлекторные и шаговые электродвигатели
  • Сервоприводы
  • ЖК и LCD дисплеи.
  • Устройства считывающие радиометки RF > Датчики для Arduino

Программная часть Arduino

Программируются микроконтроллеры на упрощенной версии языка C++ с дополнительными функциями обработки ввода и вывода для легкого и удобного использования ардуино. Так же у arduino есть своя среда разработки Arduino IDE. Подробно о том как установить, настроить и использовать эту программу изложено в статье Arduino IDE. Список необходимых функций и описание их использования вы найдете на странице программирование.

Arduino это сложно?

Вовсе нет! Ардуино становится очень популярна, благодаря простоте и дешевизне. Вы легко найдете множество уроков, советов и примеров по работе с этим микроконтроллером. Разобраться в основах можно всего за пару часов. Любой может сделать собственного робота или другое устройство независимо от подготовки. Платформа предоставляет практически безграничные возможности. Есть примеры удивительных, красивых, забавных и полезных устройств, созданных с помощью Arduino.

Выпуск 3. Основы Arduino для начинающих. Arduino изнутри – структура, составляющие и их назначение. Микроконтроллер ATmega328P

И снова привет всем любителям и новичкам программирования Arduino!)

Это третье видео (статья) из серии «основы Arduino для начинающих» и сегодня мы поговорим о внутренностях платы Arduino Uno и их предназначении, а так же уделим немного внимания её микроконтроллеру Atmega328.

Предыдущие выпуски вы найдете здесь: 0,1,2

Традиционно для вас доступны два варианта представления материала – видео и текст, надеюсь, оба варианта будут интересными 🙂

В прошлом выпуске мы говорили о том, какую плату для дальнейшего обучения лучше выбрать и остановились на использовании Arduino Uno третьей ревизии. Давайте же поближе познакомимся с компонентами этой платы и их предназначением, а также попробуем составить некоторую упрощенную структурную схему ее функционирования. Думаю, она позволит вам лучше понимать основной принцип взаимодействия отдельных узлов схемы и работу всей платы в целом.

Итак, слева я буду показывать китайский аналог Arduino Uno и его компоненты, а справа, шаг за шагом, мы будем строить функциональную схему.

С чего начинается любая схема? Конечно же, это различные компоненты, отвечающие за ее питание. Поэтому первым в нашей функциональной схеме мы выделим именно это. Вообще, у Arduino есть три пути получить энергию для работы: это питание по шине USB, от специального разъема питания на плате или входа Vin. Давайте разберем их все по отдельности.

Подключая плату к компьютеру посредством USB-интерфейса, вы подаете питание на Arduino благодаря четырехпроводной структуре шины USB, где 2 провода отвечают за передачу команд, а два других провода за непосредственное питание устройств. Именно по этим проводам Arduino и получает рабочее напряжение величиной 5В как это видно на принципиальной схеме. Так же, это напряжение поступает на вход стабилизатора напряжения, который понижает его до +3.3В, что необходимо для питания некоторых отдельных компонентов, подключаемых к Arduino, рассчитанных на это напряжение. Кстати, в качестве защиты от большого потребления тока вашей платой, на самом входе питающей линии разработчики установили небольшой предохранитель на 500мА, который, в случае различных обстоятельств, защитит USB-порт компьютера и плату Arduino от возможного выхода из строя.

все картинки кликабельны 🙂

Итак, следующим на очереди идет разъем питания для подключения, например, сетевого AC/DC-адаптера, аккумулятора или батареи. В отличие от USB-порта, где предполагается стабильное наличие напряжения 5В (или около того), в случае разъема питания ситуация складывается несколько иная, поскольку он рассчитан на подключение к нему источников питания различных напряжений. Диапазон этих значений колеблется в пределах от 6 до 20В и, при прямом подключении, это совсем не годится для компонентов нашей схемы. Поэтому разработчики поставили на входе питания стабилизаторы напряжения – один на 5В, другой на 3.3В. А так же парочку конденсаторов и диод, в качестве элементов борьбы с помехами и защиты от перепутывания полярности питания. Стоит отметить, что для стабилизатора напряжения всегда нужно напряжение, несколько выше того уровня, до которого он будет его понижать, и специфика стабилизатора такова, что уменьшение напряжения питания ниже 7В приводит к уменьшению напряжения на выводе 5V, что может стать причиной нестабильной работы устройства. Использование напряжения больше 12В может приводить к перегреву стабилизатора напряжения и выходу платы из строя. Именно поэтому, рекомендуется использовать источник питания с напряжением в диапазоне от 7 до 12В.

И, наконец, вывод Vin на плате Arduino. Если посмотреть на схему питания, то можно увидеть, что, при подключенном источнике питания к разъему, с этого вывода можно будет получить это же самое напряжение, правда, чуть меньшее из-за небольшого падения на диоде.

Ну а если теперь подключить источник питания к этому выводу, то напряжение так же попадет на стабилизатор 5В и плата будет запитана. Это удобно в случае использования различных батарей или аккумуляторов без специальных разъемов питания.

Стоит отметить, что Arduino сама выбирает источник питания с самым большим напряжением, и в этом ей помогает специальный элемент, называющийся компаратором. Если в двух словах, то компаратор, это такое устройство, которое сравнивает подаваемый на него сигнал с каким-либо опорным значением, и, если этот сигнал превышает опорное значение, то компаратор выдает на своем выходе логическую единицу (в нашем случае +5В).

Итак, с блоком питания разобрались, идем дальше.

На очереди у нас связующее звено между компьютером и программируемым нами микроконтроллером. Это еще один микроконтроллер ATmega8U2, либо, в более новых версиях ATmega16U2, который практически не заметен на плате.

Этот микроконтроллер представляет собой USART, что в переводе означает «Универсальный синхронно-асинхронный приемо-передатчик». Именно он осуществляет передачу данных по самому распространенному на сегодняшний день протоколу RS-232, c помощью которого связывает COM-порт вашего компьютера и программируемый микроконтроллер.

Помните, мы говорили, что USB-кабель имеет 4 провода, два из которых питающие, а два других – сигнальные? Так вот, именно по сигнальным проводам и происходит передача данных от ПК к микроконтроллеру и обратно, а свидетельствуют о приеме, либо передаче, специальные светодиоды на плате, имеющие названия Rx и Tx, где R это сокращение слова Receive, то есть прием, а T – transmit – то есть отправление. Причем выводы Rx и Tx всегда подключаются разноименно, то есть Rx принимающего устройства соединяется с Tx передающего, и наоборот. Это видно из схемы подключения двух микроконтроллеров на плате Arduino. Для тех, кто желает знать о том, как передаются данные по USB при помощи UART, я рекомендую ознакомиться с этой ссылкой.

Ну вот, наконец, мы и подошли с вами к главному компоненту платы Arduino – микроконтроллеру Atmega328P, который, собственно, и является основным вычислительным центром этой платформы. Давайте разберемся, из каких основных частей он состоит.

В обобщенном виде, любой микроконтроллер можно разбить на три составляющие части:

1. Вычислительный блок, иначе именуемый как арифметико-логическое устройство или процессор. Также, наверняка многие из вас слышали или видели такую аббревиатуру как CPU (Central Processing Unit) что в переводе на русский значит “центральное процессорное устройство”. Именно этот блок является самой главной частью системы и предназначен он для выполнения различных операций с числами. А вот уже последовательность этих операций называется программой. Каждая операция кодируется в виде числа и записывается в память микроконтроллера, но об этом, в другой раз..

2. Собственно, второй основной частью микроконтроллера и является модуль памяти. Это специализированное электронное устройство, которое представляет собой набор ячеек, в каждой из которых может храниться одно число. Именно здесь хранится написанная вами программа и другие команды микроконтроллера. Память делится на оперативную – ОЗУ (оперативное запоминающее устройство) и постоянную – ПЗУ (постоянное запоминающее устройство. Принципиальная разница между этими видами памяти в том, что в случае с оперативной памятью, при выключении питания микроконтроллера, записанные значения не сохраняются и существуют только до тех пор, пока это питание присутствует. Например, такая память используется для хранения каких-либо промежуточных результатов вычислений. А вот данные, хранимые в постоянной памяти, наоборот, никак не зависят от наличия питания и могут быть использованы микроконтроллером сразу же после включения. В такую память, например, записывается вся разработанная вами программа, и она никуда не пропадет при повторной подаче напряжения на микроконтроллер.

3. Наконец, третьей составляющей частью микроконтроллера являются так называемые порты ввода-вывода. Если процессор и память находятся где-то в глубине корпуса микроконтроллера и мы их не видим, то порты ввода-вывода всегда на виду – вот они, в виде небольших металлических ножек.

Конечно же, не стоит забывать, что некоторые ножки отвечают за питание и прочие компоненты, подключаемые к микроконтроллеру, но большинство из них все-таки являются портами ввода-вывода, отвечающими за непосредственное управление микроконтроллером различными датчиками, модулями, светодиодами, транзисторами и так далее. Подавляющее большинство этих портов были выведены разработчиками Arduino по краям платы и, для удобства работы, подписаны.

Именно с этими портами нам и предстоит работать в дальнейшем, ведь суть любой микропроцессорной системы сводится к управлению чем-то извне, а иначе, зачем нам микроконтроллеры? 🙂

Как уже было сказано ранее, центральный процессор является основным мозгом микроконтроллера и именно он управляет модулем памяти и портами ввода-вывода. Более подробно о работе с портами ввода-вывода мы поговорим уже через один выпуск, когда будем работать со светодиодом и кнопкой, ну а сейчас я бы хотел заострить внимание на еще одном компоненте на плате, который мы не назвали – это генератор тактовых импульсов или кварцевый резонатор.

Не пугайтесь таких сложных названий, на самом деле, все просто – для работы любого микроконтроллера нужен некий генератор импульсов, благодаря которому он сможет осуществлять свою деятельность по последовательному выполнению команд. Например, мы написали с вами программу мигания светодиодом 10 раз в секунду. Но как микроконтроллер узнает, не имея никакого представления о длительности одной секунды, когда ему пора включить светодиод, а когда пора выключить? Именно благодаря кварцевому резонатору, который, в зависимости от его номинала, генерирует определенное число импульсов за одну секунду, это число имеет единицы измерения – герцы и называется частотой. Например, частота, равная 5Гц означает 5 импульсов в секунду, 10Гц – десять импульсов и так далее.

На плате Arduino Uno для двух микроконтроллеров установлены, соответственно, два кварцевых резонатора с частотой 16МГц, что означает работу резонатора с частотой 16 миллионов(!) импульсов в секунду – только представьте, какая это огромная скорость! Именно эти импульсы и считает наш микроконтроллер, а впоследствии, по их количеству, делает вывод о том, сколько времени прошло с запуска какой-либо процедуры. За весь этот счет отвечают различные счетчики и таймеры, о которых мы обязательно поговорим в следующих выпусках, но пока вам достаточно знать, отчего зависит скорость работы микроконтроллера и как он ориентируется во времени.

Так же на плате Arduino вы могли заметить небольшую кнопку – она называется кнопкой сброса или RESET, и при нажатии на нее переводит наш микроконтроллер в исходную позицию, с которой он начинал свою работу.

Итак, мы познакомились с вами с основными составляющими платы Arduino и совсем немного поговорили о микроконтроллере ATmega. Хочу заметить, что изучению структуры и принципам работы микроконтроллеров можно посвятить большой отдельный курс, поэтому я не стал углубляться в эту тему и рассчитываю на вашу дальнейшую любознательность и стремление изучить и понять как можно большее в этой интересной сфере. В качестве дальнейшего учебного пособия по изучению микроконтроллеров AVR, не сочтите за рекламу, я советую вам книгу Белова А.В., в которой, на мой взгляд, достаточно доступным языком описаны все нюансы работы с микроконтроллерами.

Ну а на этом обзорный пост платы Arduino подходит к концу и в следующем выпуске мы познакомимся со средой программирования Arduino IDE – то есть её установкой, настройкой и пользовательским интерфейсом. Надеюсь, что данный материал был полезным и интересным для вас, спасибо за внимание и до встречи в новом выпуске! 🙂

Источники:

http://arduinoplus.ru/mikrokontrollery-chto-eto-takoe/

http://all-arduino.ru/arduino/

http://pikabu.ru/story/vyipusk_3_osnovyi_arduino_dlya_nachinayushchikh_arduino_iznutri__struktura_sostavlyayushchie_i_ikh_naznachenie_mikrokontroller_atmega328p_4497606

http://xn--18-6kcdusowgbt1a4b.xn--p1ai/%D0%BC%D0%B8%D0%B3%D0%B0%D0%BD%D0%B8%D0%B5-%D1%81%D0%B2%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%D0%BE%D0%B4%D0%BE%D0%BC/

Ссылка на основную публикацию