Как выбрать инвертор для солнечных батарей? arduino+

Как выбрать инвертор для солнечных батарей?

Инвертор – это один из основных составляющих частей системы солнечной батареи, он трансформирует постоянный ток в переменный.

Из чего состоит Инвертор

Сегодня существует большое разнообразие инверторов. Для организации обеспечения электроэнергией в частных домах своими руками, составляющие такие:

  1. Панель с фотоэлектрическими элементами.
  2. Контроллер солнечной батареи, снабжающий нормирование выходного напряжения батареи, зарядку аккумуляторов и подачу низковольтного постоянного тока в нагрузку.
  3. Электрохимические аккумуляторы, которые запасают энергию в период её излишка и подающие её в систему в период дефицита при недостаточном освещении фотоэлементов или при временном возрастании потребления.
  4. Инвертор, обеспечивающий преобразование постоянного низковольтного тока от аккумуляторов и фотоэлементов к бытовому или промышленному стандарту.

В идеале, солнечная электростанция получающая питание от разных инверторов при разной нагрузке, при этом мощность инвертора соответствует мощности и количеству выключателей на щитке распределения. Примерно это выглядит так: 4 инвертора мощностью 16А х 220В=3520Ватт и 2 инвертора мощностью:

Инверторы будут получать питание от одной группы аккумуляторных батарей, а они заряжаться от одной группы солнечных батарей.

Различия инверторов и их свойства могут быть в выходном сигнале, схемных решениях, компенсации нагрузок и прочие. Существуют инверторы, которые направляют полученную солнечную энергию в сеть. Фирмы изготовители указывают мощность в вольт-амперах, так как это на порядок выше, чем в Ватт.

Виды инверторов

Виды инверторов определяют по конфигурации сигнала выходного напряжения. Существуют такие виды сигналов:

  • синусоидальные – предназначен для пользования чувствительной техникой. Вы обезопасите себя от внезапных скачков напряжения и от дальнейшего ремонта техники. Цена довольно высокая, но оно того стоит. Установка его на дорогостоящую технику такую как холодильник, стиральную машину или же кондиционер, окупает их стоимость при ремонте.
  • инверторы с прямоугольным сигналом – самый бюджетный вариант, так как использование их подходит для осветительной техники. Они не предотвращают скачки напряжения в сети.
  • инверторы с псевдосинусоидой – это среднее между двумя верхними формами сигнала. Они справляются с поставленными бытовыми задачами, но все же не являются вариантом использования для чувствительной нагрузки. Форма сигнала, которую они создают, является причиной помех в телефонах, а также вызывает «шум» в электроприборах.

Инвертор обязан создавать постоянный и переменный ток, не допускать разрядки аккумуляторных батарей, обладать защитными функциями от замыканий и высокий запас по перезагрузке. Нынешние инверторы могут обладать многочисленными функциями, но избыток функций может затруднять результативную работу прибора.

Составные части инвертора

Блок бесперебойного питания – снабжает и проводит напряжение с помощью аккумуляторной батареи, которая является сердцем прибора. От батареи электрический импульс проходит в аккумулятор, дальше в инвертор, а после в электроприборы.

В конструкции присутствует зарядное устройство для зарядки аккумулятора. Микроконтроллер – входит в состав бесперебойного питания, который отключает и подключает аккумуляторы при скачках напряжения.

Гибридная обвязка

Полезный способ для тех домов, которые время от времени отключают электричество. Или же несколько дней держится пасмурная погода, что исключает возможность зарядить аккумуляторы от электросети.

Для таких случаев, рационально было бы иметь солнечные элементы, которые функционируют от контроллера. Они смогли бы заряжать аккумуляторные батареи. Принцип состоит в том, что инвертор включается после зарядки аккумуляторных батарей с помощью контроллера. Во время запуска инвертора он в автоматическом режиме включает нагрузку в сети.

Как выбрать инвертор для солнечных панелей

С каждым днем все больше развиваются альтернативные источники получения энергии. Их стали использовать не только в научных или промышленных целях, но и в домашних условиях. Наиболее популярными являются солнечные батареи. С их помощью можно получать переменный ток. Однако для их полноценной и правильной работы требуется инвертор. Это своего рода «сердце» системы солнечных батарей. Сегодня их на рынке представлено огромное многообразие, поэтому сначала нужно определиться с выбором.

Зачем нужен инвертор для солнечных батарей

Что такое инверторы? Инвертор – это специальное устройство полупроводникового типа, которое выступает чем-то средним между диэлектриками и проводниками. Более понятными словами: на солнечную батарею попадает солнечный свет и преобразовывается в электрический ток. Этот постоянный ток поступает в аккумуляторную систему и за счет работы инвертора перерабатывается в переменный, только с силой напряжения выше, то есть такой, каким мы привыкли пользоваться в наших домах, 220В.

Солнечные панели генерируют электроток с максимальным напряжением до 48 В. То есть отсутствие инвертора приведет к бессмысленному использованию солнечных батарей. Главная его цель – это получение переменного тока мощностью 220 В. Но при этом очень важно подобрать необходимое устройство с учетом характеристик, а именно выработки тока на пике активности солнечных радиаторов.

Виды инверторов

Различают несколько видов инверторов. Они отличаются между собой не только способом работы, но и набором технических характеристик. Только так можно обеспечить надлежащую работу солнечной электроэнергии.

Автономный

Этот тип инвертора предназначен для солнечной системы с панелями разной мощности. Основным преимуществом такого устройства является стабильность выработки электротока даже при низкой проводимости. Они также экономичнее по цене, чем другие инверторы, поэтому среди покупателей пользуются спросом. При приемлемой стоимости автономные инверторы отличаются скоростной работой и стабильностью даже при повышенной влажности. Их различают несколько видов в зависимости от формы преобразования тока:

С прямоугольным сигналом

Специалисты советуют выбирать такой тип инвертора для подачи тока к осветительным приборам. Но они не пользуются большой популярностью в связи с узким кругом применения, зато отличаются простотой использования и подключения.

С синусоидальным сигналом

Универсальный инвертор для солнечных батарей, который вырабатывает высокомощный ток, подходящий для розеток общего применения. Обеспечивает питанием даже мощные бытовые приборы с большим потреблением энергии. Помимо подачи электротока, защищает приборы от перенапряжения во время скачков, но относятся к высокому ценовому диапазону.

С псевдосинусоидальным сигналом

Это комбинированный вариант из двух вышеописанных. Инвертору свойственно вырабатывать ток как для освещения дома, так и для питания всех электроприборов, при этом осуществляется полный контроль перепадов напряжения. Из недостатков можно выделить наличие шумовых волн, которые станут помехой для работы с чувствительными приборами.

Сетевой

Сетевые инверторы называются еще синхронными. Такая разновидность идеально подходит для солнечных батарей в виде тарелки. Они преобразовывают поступившие диоды с низкочастотными модулями и создают вариации для использования переменного тока. На сетевые инверторы возложено не только получение тока с напряжением 220 В, но и устранение амплитудных перепадов, сохранение электроэнергии в аккумуляторе при низком уровне энергопотребления. То есть при неполадках в солнечной системе вся нагрузка ложится на сетевой преобразователь.

Многие покупатели делают выбор именно в пользу таких инверторов, так как они выполняют сразу несколько функций: преобразовывают ток, повышают мощность электросистемы, убирают проблему с перепадами тока и продолжают работу даже в случае потери сети. Если быть точнее, такие инверторы называются гибридными. При выработке излишней электроэнергии ее излишки направляются во внешние источники сети.

Многофункциональный

Многофункциональный солнечный преобразователь отличается надежностью, ну и соответственно высокой стоимостью. Он включает все лучшие качества первых двух инверторов, обладает большим количеством настроек и подходит для любых солнечных батарей. После его установки и подключения вы сможете обеспечить электроэнергией необходимые узлы питания, при этом сохранить бесперебойную работу во время изменения мощности подачи постоянного тока. На сегодняшний день это самый оптимальный вариант для устройства солнечной домашней станции.

Что нужно учитывать при выборе инвертора

При выборе инвертора следует учитывать множество значимых факторов и технических параметров, которые смогут полноценно обслуживать солнечную систему и обеспечивать бесперебойным питанием. Основными показателями для выбора являются:

  • КПД – коэффициент полезного действия;
  • номинальная мощность;
  • пиковая мощность;
  • потребляемая мощность;
  • масса устройства;
  • значение температурного диапазона.

Получаемое количество электроэнергии от батареи можно экономить, если выбрать преобразователь с КПД не менее 90%. При этом надо учитывать нагрузку при включении сразу нескольких электроприборов. Ведь мощность расходуется и на работу самого инвертора, около 1% его рабочей номинальной выработки. Специалисты советуют делать выбор инверторов в пользу тех, мощность которых превышает на 25% необходимую номинальную мощность, рассчитанную на основе потребления обязательных электроприборов в доме.

Особенно важным показателем инвертора является зависимость мощности устройства от выходного электропотока, а именно:

  • 12 В – до 600 Вт;
  • 24 В – от 600 до 1500 Вт;
  • 48 В – более 1500 Вт.

При расчете затрата энергии следует знать, что почти все виды техники обладают пусковой мощностью. При этом пусковая мощность, которая необходима для пуска и старта работы электроприбора, в 1,5 раза превышает номинальную, соответственно, нужно при расчетах оставлять небольшой зазор, который как раз и будет направляться на включение прибора. После нескольких секунд электрическое устройство будет работать в штатном режиме. Найти значение пусковой мощности можно в технической документации.

Последнее, на чем стоит акцентировать внимание, это то, что в зависимости от количества батарей понадобится определенное количество инверторов. Здесь все зависит от мощности солнечной батареи. Если ее мощность находится в пределах 5кВт, то достаточно будет одного инвертора. Соответственно, для двух и более батарей нужно будет покупать больше инверторов.

Рейтинг моделей инверторов

Ниже представлен рейтинг лучших моделей инверторов для преобразования постоянной солнечной энергии в переменную для бытовых целей. Перед покупкой внимательно ознакомьтесь с техническими характеристиками каждого с учетом вышеприведенных рекомендаций.

MAP HYBRID 243X3

Это трехфазное устройство, которое обладает следующим набором характеристик:

  • мощность 9 кВт;
  • суммарная рекомендуемая мощность 100 В;
  • пиковое значение 15 кВт;
  • частота 50 Гц;
  • температура минус 25 – плюс 50;
  • размер 630х370х510мм;
  • масса 61,5 кг.

Это тип гибридных инверторов, который работает в автономном режиме как с солнечными станциями, так и бытовой сетью. MAP HYBRID характеризуется высоким значением КПД. В случае отказа одной из фаз прибор продолжает работать, а функция генерации перекладывается на АКБ, при этом работа солнечной батареи никак не изменяется, а на выходе вы все равно получаете максимум – 380 В.

MAP HYBRID 2445X3

Принцип работы этого инвертора не отличается от предыдущего, здесь так же есть возможность аккумулировать энергию в АКБ и использовать ее в случае прекращения работы как одной из фаз, так и всех трех. Отличие устройства заключается в технических характеристиках:

  • общая мощность 24В;
  • мощность наибольшая 13,5кВт;
  • мощность пиковая 21 кВт;
  • мощность номинальная 8 кВт;
  • частота 50 Гц;
  • рекомендуемая емкость батареи min -1200 и 600 А/ч;
  • диапазон температур -25…+50;
  • размер 630×370×501мм;
  • вес 74,7 кг.

MAP HYBRID 246X3

Данная модель идеально подходит как для батареи, так и для бытовой сети. Имеет следующие показатели:

  • наибольшая мощность 18 кВт;
  • пиковая мощность 27 кВт;
  • номинальная мощность 12 кВт;
  • размеры 720/370/510 мм;
  • вес 94,8 кг.

На выходе вы также будете получать максимальное значение напряжения сети – 380 В. В случае отказа работы или исчезновения тока в одной из фаз, на подстраховку подключается АКБ. Частота передачи полностью подстраивается под существующую в сети. После достижения пиковой мощности работа будет продолжаться еще 5 секунд.

4 MAP HYBRID 249X3

Несмотря на то, что этот трехфазный инвертор уступает предыдущему, отдельные его значения находятся на порядок выше, но это в первую очередь связано с его увеличенным весом. По остальным своим функциональным характеристикам он полностью идентичен, так же выдает до 380В и может работать без перебоев даже в случае отключения одной из фаз.

  • пиковая мощность 27кВт;
  • наибольшая мощность 27 кВт;
  • номинальная мощность 18 кВт;
  • размер 720/410/560 мм;
  • вес 122,1 килограмм.

5 MAP HYBRID 4845X3

Занимает почетное пятое место и отличается небольшим весом, несмотря на достаточно хорошие качественные и технические характеристики. Что особенно важно, работает с максимальным показателем КПД до 95%.

  • пиковая мощность 21 кВт;
  • номинальная мощность 9 кВт;
  • наивысшая мощность 13,5 кВт;
  • рабочая температура -25…+50;
  • размер 630х370х510 миллиметра;
  • вес 59,3 килограмма.

Инвертор преобразовывает напряжение с одной фазы в трехфазное. Отлично работает с солнечной станцией и переменным током с напряжением в 220В. Также обладает способностью генерировать энергию в АКБ и использовать ее при отключении батареи. Данный инвертор можно использовать в любых целях как для обеспечения освещения независимо от территории и количества осветительных приборов, так и для работы электроприборов.

Советы по выбору контроллера для солнечных панелей.

Добрый день. И так, по предыдущим постам с выбором количества аккумуляторов и инвертора для домашней солнечной электростанции или резервной системы я рассказал. Расскажу теперь о контроллерах для солнечных панелей, о наиболее популярных моделях, сильно крутые и дорогие модели это отдельная история.

Контроллеры продаются двух видов, это ШИМ (или PWM) что означает ШИРОКО-ИМПУЛЬСНАЯ МОДУЛЯЦИЯ.

ШИМ – контролеры обеспечивают многоуровневый процесс заряда батареи: наполнение, поглощение, выравнивание и подзарядка (поддержание). На первом уровне, при максимально разряженной батарее, происходит прямое подключение солнечных батарей к аккумулятору. Заряд осуществляется максимальным током.

При достижении определённого напряжения происходит переключение на второй уровень с включением режима широтно-импульсной модуляции. Напряжение в системе поддерживается постоянным, а ток заряда постепенно снижается, пропорционально заряду.

На третьем уровне включается режим подзарядки для герметичных батарей, т. к. данные аккумуляторы не требуют выравнивающего заряда. А для жидко-электролитных сначала включается режим выравнивания, а затем режим поддержания. Все это происходит вот по такому графику:

И контроллеры MPPT (maximum power point tracking ), то есть слежение за точкой максимальной мощности. Если вы хотите увеличить выработку энергии вашими солнечными батареями без добавления солнечных панелей, то вам нужно заменить ваш солнечный контроллер на контроллер со слежением за точкой максимальной мощности (ТММ)солнечной батареи. Такой контроллер позволит в большинстве случаев увеличить выработку электроэнергии по сравнению с ШИМ контроллерами .

Естественно они очень отчаются по цене. Если у вас одна/две панели для резерва или вы собираетесь на даче вечерком смотреть телевизор, плюс свет в комнате, то не заморачивайтесь и поставить ШИМ контроллер, допустим вот такой JUTA CM20, напряжение 12/24V , максимальный ток на входе 10А, мощность подключаемых солнечных панелей -120Вт (12В) и 240Вт (24В). Цена на него колеблется в пределах 1000-1300 руб.

Обращаю ваше внимание, что практически на всех моделях ШИМ контроллеров, есть автоматическое включение-выключение освещения на 12/24V, точнее разъемы под освещение есть, но китайские товарищи последнее время, видать в целях оптимизации расходов эту опцию не ставят, напряжение на контактах есть, но никакой автоматики по включению/выключению нет, контакты сделаны параллельны с контактами подключения АКБ. Так что если вам нужна такая опция, то ищите контроллеры с кнопкой как на фото, это кнопка настройки автоматики включения/выключения освещения.

Да, и в 99% инструкций не написано как этим пользоваться, хотя может быть на китайском и написано, но вот я его не понимаю. В двух словах, вы все подключили, светодиод над кнопкой горит, нажимаете на кнопку и держите 3-5 сек., светодиод начинает моргать, одно включение светодиода, означает один час работы освещения после захода солнца, так что вам нужно просто отсчитать количество морганий и опять нажать кнопку. То есть моргнул 5 раз, нажали кнопку, свет автоматически включится и проработает 5 часов, после чего выключится. Так же есть контроллеры с двумя таймерами, один отслеживает время включения освещения после захода солнца, второй отвечает за включение освещение перед восходом солнца. Например, солнце зашло, освещение поработало 3 часа, выключилось, потом перед восходом солнца скажем за 2 часа (это как запрограммируете) освещение опять включится и выключится когда солнце взойдет.

Ну а если у вас более солидная солнечная электростанция то уж лучше ставить MPPT контроллер. Выбор моделей очень большой и наименьшая цена находится где то в районе 7000 руб. Еще хочу заострить ваше внимание на том, что частенько в технических характеристиках пишут так — номинальное напряжение 12/24/48В , но чаще всего контроллер работает на 12/24В , а 48В нужно заказывать отдельно, соответственно и цена будет несколько выше. Это относится и к таким опциям как подключение контроллера к интернету или поддержка им SIM -ок , это все обычно не в ходит так сказать в базовую комплектацию.

Старайтесь контроллеры выбирать с дисплеем, это значительно упростит вам использование солнечной электростанции, хоть они и несколько дороже контроллеров с простейшей индикацией на светодиодах. На дисплее отображаются данные по току получаемому от панелей, температуре, заряжаются или уже заряжены АКБ, сколько выработано за день и т. д.

Да и забыл сказать, контроллеры и ШИМ и МРРТ должны находиться в одном помещении с аккумуляторами, так как в них есть температурные датчики. И еще один момент, электроника штука такая, может десятилетиями не ломаться, а может и через пару дней накрыться, так что я порекомендую иметь в запасе парочку ШИМ контроллеров не дорогих, если что то случится они выручат.

Надеюсь, что помог тем кто решил обзавестись солнечной электростанцией и сейчас подбирает оборудование. И будет чаще встречаться такая картинка.

Двухосевой солнечный трекер на Arduino

Для начала, наверное, стоит рассказать, что в этой статье понимается под солнечным трекером. Коротко говоря, устройство представляет собой подвижную подставку под солнечную панель, нужную, чтобы в условиях наших умеренных широт панель собирала достаточное количество света, меняя своё положение вслед за солнцем.

В данном случае прототип солнечного трекера собирался на базе Arduino. Для вращения платформы в горизонтальной и вертикальной оси используются сервоприводы, угол поворота которых зависит от мощности падающего на фоторезисторы света. В качестве корпуса используется всеми любимый советский металлический конструктор.

Нелишним будет упомянуть, что всё это делалось как курсовой проект, поэтому я не стал заниматься приобретением и креплением собственно, самой солнечной панели и аккумулятора, так как их наличие не имеет отношения к работе трекера. В оправдание могу сказать, что возможности советского металлического конструктора необъятны, так что прикрутить к нему небольшую солнечную панель для зарядки телефона не составит особенного труда, если возникнет такое желание.

Итак, что использовалось при сборке:

  • Arduino MEGA 2560 R3
  • Сервопривод Tower SG90 — 2x
  • Фоторезистор MLG4416 (90mW; 5-10kOhm/1.0MOhm) — 4x
  • Звонок пьезоэлектрический KPR-G1750
  • Металлический конструктор
  • Резистор выводной 10 kOhm; 0,25W; 5% — 4x
  • Печатная макетная плата, корпус, шнуры для соединения

Mega использовалась исключительно по причине её наличия в шкафу на момент утверждения темы проекта, если учитывать покупку всех элементов с нуля, то в данном случае вполне себе хватит и Uno, но выйдет, конечно, дешевле.

Внезапно оказавшийся в списке спикер потребовался для пущего эффекта высокотехнологичности. Дело в том, что сервоприводы могут поворачиваться только на 180 градусов, да большего нам и не требуется, при учёте того, что следим мы за солнцем. Но при тестировании работы проекта, когда за солнцем в две минуты демонстрации особо не последишь, оказалось, что неплохо было бы сигнализировать, в какой момент стоит перестать размахивать фонариком, потому что сервопривод достиг мёртвой зоны. Для этого и был добавлен вышеупомянутый звонок.

Итак, начнём собирать трекер. Для начала разделим предстоящий фронт работ на условные четыре этапа: сборка подставки для солнечных панелей и крепление сервоприводов, крепление к собранной конструкции светочувствительных элементов, пайка и написание кода для Arduino.

Фигура первая: конструкторская

Путём интенсивного поиска была найдена парочка примеров конструкции подобных устройств. Наибольшего внимания удостоились два:

  • www.youtube.com/watch?v=SvKp3V9NHZY – победитель в номинации «Подача материала» проиграл в надёжности и практичности устройства: конструкция представляет собой соединение двух сервоприводов напрямую.
  • www.instructables.com/id/Simple-Dual-Axis-Solar-Tracker — собственно, отсюда и была взята основная идея моей конструкции, за исключением материала и общего внешнего вида поворотного корпуса.

Сборка из металлического конструктора была сопряжена с определёнными трудностями: пришлось подогнать дрелью отверстия для подключения сервоприводов, а также надёжно приклеить их к платформам в двух плоскостях. То, что получилось, показано на видео ниже.

Фигура вторая: схемотехническая

Главной задачей крепления фоторезисторов было даже не их подключение, а обеспечение разделения света для каждого из четырёх элементов. Понятно, что оставить их без каких-нибудь перегородок было нельзя, так как тогда значения, получаемые с фоторезисторов, были бы примерно одинаковы и поворота бы не получилось. Тут, к сожалению, возможности металлического конструктора подвели, главным образом из-за наличия во всех деталях отверстий. Найти подходящей металлической детали не получилось, поэтому мой солнечный трекер обзавёлся инновационной перегородкой из картона. Несмотря на достаточно убогонький вид, своё предназначение она выполняет отлично.

Фоторезисторы к корпусу прикреплены вполне надёжно, единственное, с чем стоило бы поработать – это с аккуратностью их расположения на платформе: сейчас они смотрят вверх недостаточно перпендикулярно, что может расстраивать перфекционистов и слегка портить точность поворота.

Немного схемотехники: подключение светочувствительных элементов осуществляется по схеме делителя напряжения, для чего потребовались указанные в списке элементов выводные резисторы. Все фоторезисторы припаяны к общему контакту, подключенному к пятивольтному выходу питания Arduino. Для удобства и эстетики ноги фоторезисторов припаяны к контактам двух трёхжильных изолированных проводов (один контакт остался неиспользуемым и спрятан). Все схемотехнические детали можно рассмотреть на схеме ниже.

Фигура третья: паяльная

Что-либо подробно описывать тут не несёт особого смысла, поэтому просто прилагаю фото используемых материалов и полученную в результате макетную плату.

Фигура четвёртая: с новым кодом!

Общий алгоритм работы заключается в обработке данных с фоторезисторов при помощи АЦП. Имеем 4 элемента, то есть 4 показания, находим среднее показание по левой стороне ((верхний левый + нижний левый) / 2), аналогично по правой, верхней и нижней сторонам. Если разница по модулю между левой и правой стороной больше порога, то осуществляем поворот в сторону с большим средним значением. Аналогично для верха и низа. Особые плюшки в коде: можно задавать вручную чувствительность срабатывания и максимальный и минимальный угол в двух плоскостях. Листинг рабочего кода приведён ниже.

Результат работы

Источники:

http://www.termico-solar.com/invertor-dlya-solnechnyh-panelej/

http://pikabu.ru/story/sovetyi_po_vyiboru_kontrollera_dlya_solnechnyikh_paneley_3986420

http://habr.com/post/357900/

http://arduinoplus.ru/khadas-odnoplatnii-komputer/

Ссылка на основную публикацию