Блок питания на ардуино: виды, особенности, возможная схема

ATX блок питания управляемый Arduino

Может ли микроконтроллер контролировать собственный источник питания? Почти!

Блок питания от старого компьютера (или новый) – это отличный способ питания Arduino и других устройств. Это рассматривается в этой и нескольких подобных статьях. Однако благодаря некоторым особенностям ATX, мы можем использовать его как “умный” блок питания, а это еще лучше.

В этой статье описано как просто при помощи микроконтроллера контролировать источник питания. Таким образом, вы можете использовать ATX блок питания в нескольких режимах: он может отдыхать, работать в экономичном режиме для слаботочных устройств и давать десятки ампер на 5В и/или 12В линии при необходимости.

На видео в конце показана эта идея в действии.

Общая стоимость управления блоком питания составляет несколько фунтов, вы не повредите блок питания, и сможете использовать его в дальнейшем.

Материалы и инструменты

Необходимые детали:
Удлинитель ATX кабеля для материнской платы
3 провода с BLS штырьками
1K резистор (номинал не критичен)
Термоусадочная трубка

Инструменты:
Паяльник и припой
Ножницы
Зажигалка для нагрева термоусадочной трубки.

Основные элементы:
Блок питания ATX
5В микроконтроллер или Arduino
Мощные транзисторы для коммутации

Характеристики

Блок питания ATX это замечательная вещь!

На наклейке нового блока питания купленного за 700 руб, указаны такие параметры:
20А на 3.3В
30А на 5В
30А на 12В

Плюс ток в режиме простоя: 2А на 5В

Сейчас 5В 2A вполне достаточно для запуска практически любых микроконтроллеров 5В.

Все, что нам нужно сделать, это использовать 5В в режиме простоя для запуска и работы нашей платы, а при необходимости переключиться на высокий ток.

Изготовление разъема

Разъем питания ATX хорошо известен, и с его распиновкой можно ознакомиться в Интернете, например, здесь.

Нам нужны: провод резервного питания 5В (фиолетовый), провод управления (зеленый) и любой провод GND (черный).

Начнем с того конца удлинителя, который показан на первой картинке. Отрежьте от него всё, что нам не нужно. Затем отрежьте фиолетовый, зеленый и черный провода ближе к другому концу. Наденьте на них термоусадочную трубку и обрежьте провода с BLS штырьками с одного конца.

Необходимо добавить резистор 1 кОм на провод управления во избежание избыточного тока. Припаяйте резистор на зеленый провод с BLS штырьком, а потом на зеленый провод удлинителя ATX. Припаяйте к фиолетовому и черному проводу соответствующие провода с BLS штырьками (в моем случае красный и черный). Наконец, прогрейте термоусадочные трубки.

Контроль и использование Arduino ATX

Чтобы использовать и контролировать ATX блок питания достаточно использовать Arduino.

Подключите фиолетовый (на фото красный) ATX провод к +5 В (не используйте Vin) и черный провод ATX к GND.

Подключите зеленый провод ATX к любому управляющему выводу. Я использовал A0 (D14), но общие выводы цифрового ввода-вывода работают так же.

Подключите ATX, и Arduino будет получать резервный ток, и вентилятор, вероятно, будет выключен.

При необходимости полной мощности просто используйте команду:
const int ctrlPin=14; // Используйте необходимый вам pin. Я использовал D14.
digitalWrite(ctrlPin, LOW);

Для отключения полной мощности используйте:
digitalWrite(ctrlPin, HIGH);

Что эквивалентно команде:
pinMode(ctrlPin, INPUT);
т.е. выход установится в состояние с высоким сопротивлением.

Теперь все что вам нужно сделать, это подключить высокоточную нагрузку на любой из разъемов типа MOLEX блока питания ATX и управлять ими с помощью транзисторов, MOSFET -транзисторов и т.д. Когда вам понадобится большой ток, просто используйте команды указанные выше.

Примечание – вы должны быть осторожны при питании Arduino прямо от +5 В. Если вы также подключили кабель USB, то ток может пойти в USB порт вашего ПК, так что будьте осторожны.

Управление ATX в действии

Ниже приведено видео будильника со световым эффектом.
Вы видите, что Arduino отображает время постоянно, но изначально вентилятор на ATX блоке питания не работает. Это потому, что мы использует резервное напряжение.

Когда я запускаю основную светодиодную лампу (около 9 Вт на данный момент), Arduino включает основное питание ATX и вентилятор начинает работать. Когда лампа погаснет, вентилятор остановится.

Для будильника это очень полезно, потому что шум вентилятора будет мешать ночью. Есть много подобных ситуаций, когда основное питание ATX нужно только время от времени.

Создание и контроль блока питания с помощью Ардуино

Часто начинающие электронщики задаются вопросом: можно ли сделать блок питания на Ардуино. Это возможно. Блок питания сломанного компьютера отлично подойдет для создания зарядного устройства для микроконтроллера Ардуино и других приборов, которым требуется электрическое питание. При создании блока питания важно учитывать особенности выбранной модели.

Сегодня мы подробнее разберем как можно с помощью платы Ардуино создать контролируемый блок питания своими руками. После конструирования получится настоящий регулировщик питания, который способен работать в следующих режимах: время отдыха, режим экономии для слабой электроники и работа в десяток ампер на 5 Вольт или 12 Вольт, если это необходимо.

Назначение блока питания на Ардуино

Все виды блоков питания созданы с одной целью – преобразовать полученную из сети переменного тока электрическую энергию для полноценной работы компьютерного устройства. Блок питания для Ардуино будет превращать сетевое переменное напряжение, поступающее в размере 220 Вольт и 50 Гц, в напряжение постоянного характера 5 или 12 Вольт или же в 3,3 Вольт, поддерживается в некоторых системах.

Если требуется блок питания для цифровой схемы, а к этой категории относится системная плата, платформа различных адаптеров и накопители с информацией в виде дисков, нужно настроить рабочее напряжение на 3,3 Вольта.

При конструировании источника питания для двигателей, дисководов и вентиляторов, рабочее напряжение повышается на 9 Вольт. Компьютер не сломается и не выйдет из строя, если напряжение в сети соответствует положенной норме.

Типичный паспорт блоков содержит информацию о том, что источник перерабатывается – требуется положительное напряжение и отрицательное. Для нормальной работы электронных схем и различного вида двигателей необходимо 5+ или 12+ Вольт. Здесь возникает вопрос: зачем нужно отрицательное напряжение? Отрицательное напряжение использовалось в старых компьютерах. Современные устройства работают только с положительным зарядом.

Виды блока питания

Источники питания подразделяют на виды по типу их работоспособности:

  1. Трансформаторный, по-другому линейный.
  2. Импульсный, по-другому инверторный.

Первый вид сделан из трансформатора понижения и выпрямителя. Такая конструкция преобразует переменный ток в постоянный. После этого установлен фильтр в виде конденсатора. Он сглаживает пульсации, тем самым стабилизируя выходные параметры и защищая устройство от коротких замыканий.

Плюсы трансформаторного блока:

  • надежность;
  • легко ремонтировать;
  • конструкция быстро разбирается;
  • практически отсутствуют помехи при работе;
  • низкая стоимость.

Минусов всего 2 – большая масса и маленький КПД.

Еще одна простейшая схема:

Второй вид построен по принципу инверторной системы, где переменное напряжение перерабатывается в постоянное. После этой операции создаются высокочастотные импульсы, которые также проходят трансформацию. Если устройство поддерживает гальваническую развязку, то созданные импульсы будут передаваться трансформатору. В противном случае импульсы переходят прямо к НЧ фильтру, который встроен на выходе электронного прибора.

Для формирования высокочастотных сигналов в импульсный блок питания Ардуино внедрили небольшой по размеру трансформатор. Такая конструкция заметно меньше по габаритам и массе в отличие от трансформаторного источника питания. Чтобы стабилизировать напряжение в сети, необходимо использовать обратную связь с отрицательным показателем. Поэтому на выходе в сети ничего не замкнет, так как здесь держится постоянный и оптимальный уровень напряжения, который не зависит от величины нагрузки.

Схема импульсного блока питания может быть такой:

Плюсы второго вида источников питания:

  • небольшая масса;
  • маленькие габариты;
  • высокий КПД;
  • средняя стоимость.

Кроме того, такой блок имеет дополнительную защиту, которая обеспечивает безопасность при эксплуатации электронного устройства. БП импульсного характера оснащены защитой от внезапных коротких замыканий или поломке компьютерных девайсов.

К минусам можно отнести отсутствие гальванической развязки, при которой ремонтные работы проходят быстро и легко. Помимо этого значительного минуса есть еще 2 – нагрузка на нижний предел ограничена, прибор часто провоцирует помехи высокой частоты. Когда аппарат не набирает требуемую мощность, компьютерное устройство не заработает.

Инвертором именуют девайс, который популярен среди владельцев автомобилей. Он преобразует напряжение 12 или 24 Вольта в переменное на 220 Вольт. Электрический ток в блок подается напрямую от аккумулятора машины. Прибор особенно пригодится в том случае, когда требуется подключить электроприемник, форма сигнала которого не идеальна по синусоидальному стандарту. Перед подключением в сеть необходимо проверить требуемое для работы напряжение во избежание поломки или замыкания.

Плата импульсного блока питания

Плюсы вышеуказанного прибора:

  • компактность;
  • небольшая масса;
  • предусмотрен защитный механизм против скачков напряжения;
  • устройство легко эксплуатировать.

К недостаткам можно отнести большую цену и минимальную надежность платформы управления микропроцессором.

Компоненты устройства

Инструменты, которые необходимы для создания лабораторного блока питания на Ардуино:

  1. Паяльный аппарат.
  2. Ножницы.
  3. Спички или зажигалка для подогрева термоусадочной трубки.
  1. Термоусадочная трубка.
  2. Резистор 1К, номинал подойдет любой.
  3. Провода с БЛС штырями – 3 штуки.
  4. Удлинитель АТХ кабеля для подключения к материнской плате.
  1. Источник питания АТХ.
  2. Транзисторы, которые поддерживают высокую мощность для коммутации.
  3. Микропроцессор Ардуино примерно на 5 Вольт.

Особенности и характеристика

Чтобы лабораторный блок питания на Аrduino бесперебойно работал, нужно, при подключении схем, быть внимательным и осторожным. Для начала берется красный АТХ провод и подключается к 5+ Вольт. А провод черного цвета подключается к GND.

Распиновка разъемов питания ATX

Затем зеленый провод присоединяется к управляющему выходу. Можно использовать контакт А0. Однако общие выводы цифровых входов и выходов работают по одной схеме. Завершаем операцию подключением АТХ. Теперь микропроцессор Ардуино получает резервный ток, при этом вентилятор выключен.

Для того чтобы электронное устройство работало на всех мощностях, необходимо задать команду:

Чтобы выключить вышеуказанную функцию, задаем в программе

В конце операции необходимо подключить высокоточную нагрузку. Это можно сделать с любым из разъемов по виду МОЛЕКС блоков АТХ. Управление производится с помощью транзисторов. Если пользователю нужно более высокое напряжение, ток регулируется командами, описанными выше.

Спецификация ATX предполагает, что вы можете как удерживать + 5 В так и отключить/разъединить (установить высокое сопротивление), чтобы отключить основное питание.

Вывод

Вариант того, что можно получить смотрите на видео ниже:

Самостоятельно сконструированный блок в домашних условиях обойдется гораздо дешевле магазинного аппарата. Цена электронного устройства в магазинах – от 700 рублей. Сегодня 5 Вольт вполне достаточно для подключения любых микроконтроллеров, работающих под этим напряжением.

AlexxNB › Блог › Простой лабораторный блок питания на Arduino

Давно была необходимость использовать блок питания на различные напряжения, но руки все не доходили сделать. Однажды попался в руки трансформатор 18v-2A и было решено все-таки изготовить этот нужный прибор.

В сааамом простом варианте регулируемый блок питания можно сделать всего лишь на LM317 (или КР142ЕН12) по схеме вроде этой:

Взяв за основу эту схему, я вместо потенциометра сделал набор из 6 подстроечных и одного переменного сопротивления. Управляет подключением резисторов к регулятору ATMega368(или ATMega168) через ULN2003. Таким образом в моем блоке питания появилось 6 предустановленных напряжений и возможность регулировать вручную тоже осталась. Я настроил такой ряд напряжений: 3.3в, 5в, 9в, 12в, 15в и 24в.

На выходе регулятора добавлен транзистор IRF9540 — это дало возможность программно управлять подачей напряжения на выходные клеммы.

Раз уж у нас есть мозги в БП, то, наверное, стоит добавить и LCD экран, и отображать на нем напряжение и ток. Я взял символьный экранчик Winstar 1202 русифицированный. Так же в схему добавлены узлы измерения напряжения и тока. Простой делитель напряжения R16-R17 от выходной клеммы на аналоговый вход ATMega измеряет напряжение. Другой аналоговый вход измеряет напряжение на делителе, образованным сопротивлением подключаемой нагрузки и шунтом R18, что позволяет вычислить силу тока. Два стабилитрона, позволяют защитить входы МК, если напряжение будет выше расчетных. Решение подсмотрено тут. Измерение силы тока и наличие транзистора позволило моментально отключать нагрузку в случае превышения силы тока выше заданного или коротком замыкании.

Для управления добавлены 3 тактовые кнопочки подключенные к третьему аналоговому входу.

Для питания ATMega я использовал импульсный стабилизатор, у меня сразу был готовый модуль. Наличие постоянных и стабилизированных +5В позволило добавить в БП USB гнездо для подзарядки чего-либо.

В итоге получил вот такую схему:

Плату разводил в Sprint Layout 6. Давно пытаюсь перейти на что-то другое, но нигде не встретил той простоты, что есть в SLayout. Потихоньку пытаюсь переучится на DeepTrace.

Программу МК написал, как всегда в Arduino IDE. Долгими нажатиями на ” ” можно поочередно перебирать предустановленные напряжения. Кратким нажатием кнопки “Режим” включать и отключать напряжение на выходе. Краткими нажатиями ” ” переключать отображение параметров: “Напряжение и ток”=>”Напряжение”=>”Ток”=>”Мощность”. Долгим нажатием “Режим” можно войти в режим настройки, где также можно выбрать выходное напряжение и настроить состояние БП при включении(подавать или нет напряжение на выход сразу).

Корпус для БП тоже сделал с нуля. Разработал 3д модель в программе FreeCad и распечатал на своем 3D принтере.

Блок питания, после сборки необходимо настроить.
— Во-первых модуль lm2596 нужно ОБЯЗАТЕЛЬНО настроить на +5в еще до подключения в схему, иначе можно спалить МК.
— Далее подключить к БП мультиметр и по нему настроить все предустановленные напряжения подстроечными резисторами.
— Также по мультиметру подобрать все значения в скетче Meters (опроное напряжение, резисторы), чтобы значения были как можно более точными.

ATX блок питания управляемый Arduino

Может ли микроконтроллер контролировать собственный источник питания? Почти!

Блок питания от старого компьютера (или новый) – это отличный способ питания Arduino и других устройств. Это рассматривается в этой и нескольких подобных статьях. Однако благодаря некоторым особенностям ATX, мы можем использовать его как “умный” блок питания, а это еще лучше.

В этой статье описано как просто при помощи микроконтроллера контролировать источник питания. Таким образом, вы можете использовать ATX блок питания в нескольких режимах: он может отдыхать, работать в экономичном режиме для слаботочных устройств и давать десятки ампер на 5В и/или 12В линии при необходимости. Общая стоимость управления блоком питания составляет несколько фунтов, вы не повредите блок питания, и сможете использовать его в дальнейшем.

  • Удлинитель ATX кабеля для материнской платы
  • 3 провода с BLS штырьками
  • 1K резистор (номинал не критичен)
  • Термоусадочная трубка
  • Паяльник и припой
  • Ножницы
  • Зажигалка для нагрева термоусадочной трубки.
  • Блок питания ATX
  • 5В микроконтроллер или Arduino
  • Мощные транзисторы для коммутации

Характеристики ATX-блока питания:

Блок питания ATX это замечательная вещь! На наклейке нового блока питания купленного за 700 руб, указаны такие параметры: 20А на 3.3В, 30А на 5В, 30А на 12В плюс ток в режиме простоя: 2А на 5В. Сейчас 5В 2A вполне достаточно для запуска практически любых микроконтроллеров 5В.

Все, что нам нужно сделать, это использовать 5В в режиме простоя для запуска и работы нашей платы, а при необходимости переключиться на высокий ток.

Разъем питания ATX хорошо известен, и с его распиновкой можно ознакомиться в Интернете, например, здесь. Нам нужны: провод резервного питания 5В (фиолетовый), провод управления (зеленый) и любой провод GND (черный).

Начнем с того конца удлинителя, который показан на первой картинке. Отрежьте от него всё, что нам не нужно. Затем отрежьте фиолетовый, зеленый и черный провода ближе к другому концу. Наденьте на них термоусадочную трубку и обрежьте провода с BLS штырьками с одного конца.

Необходимо добавить резистор 1 кОм на провод управления во избежание избыточного тока. Припаяйте резистор на зеленый провод с BLS штырьком, а потом на зеленый провод удлинителя ATX. Припаяйте к фиолетовому и черному проводу соответствующие провода с BLS штырьками (в моем случае красный и черный). Наконец, прогрейте термоусадочные трубки.

Контроль и использование Arduino ATX

Чтобы использовать и контролировать ATX блок питания достаточно использовать Arduino. Подключите фиолетовый (на фото красный) ATX провод к +5 В (не используйте Vin) и черный провод ATX к GND. Подключите зеленый провод ATX к любому управляющему выводу. Я использовал A0 (D14), но общие выводы цифрового ввода-вывода работают так же. Подключите ATX, и Arduino будет получать резервный ток, и вентилятор, вероятно, будет выключен.

При необходимости полной мощности просто используйте команду:

const int ctrlPin=14; // Используйте необходимый вам pin. Я использовал D14.
digitalWrite(ctrlPin, LOW);

Для отключения полной мощности используйте:

Что эквивалентно команде:

т.е. выход установится в состояние с высоким сопротивлением.

Теперь все что вам нужно сделать, это подключить высокоточную нагрузку на любой из разъемов типа MOLEX блока питания ATX и управлять ими с помощью транзисторов, MOSFET -транзисторов и т.д. Когда вам понадобится большой ток, просто используйте команды указанные выше.

Примечание! Вы должны быть осторожны при питании Arduino прямо от +5 В. Если вы также подключили кабель USB, то ток может пойти в USB порт вашего ПК, так что будить осторожны.

Управление ATX в действии

Ниже приведено видео будильника со световым эффектом. Вы видите, что Arduino отображает время постоянно, но изначально вентилятор на ATX блоке питания не работает. Это потому, что мы использует резервное напряжение.

Когда я запускаю основную светодиодную лампу (около 9 Вт на данный момент), Arduino включает основное питание ATX и вентилятор начинает работать. Когда лампа погаснет, вентилятор остановится.

Для будильника это очень полезно, потому что шум вентилятора будет мешать ночью. Есть много подобных ситуаций, когда основное питание ATX нужно только время от времени.

C этой схемой также часто просматривают:

Стабилизированный источник питания 1-40В 0..2А
Устройство для автоматической подзарядки аккумуляторов в системе аварийного питания
Блок питания на 3В
Лабораторный блок питания 1,3-30v 0-5A
Лабораторный блок питания 0. 30 В 3А
Arduino своими руками с USB портом
Экономичный электронный тюнер с высокой чувствительностью на микросхеме TA8122
Приемник диапазона 160 метров на микросхемах SA612A
FM-передатчик на микросхеме MAX2606

–>

Главные категории

Arduino

Аудио

В Вашу мастерскую

Видео

Для автомобиля

Для дома и быта

Для начинающих

Зарядные устройства

Измерительные приборы

Источники питания

Компьютер

Медицина и здоровье

Микроконтроллеры

Музыкантам

Опасные, но интересные конструкции

Охранные устройства

Программаторы

Радио и связь

Радиоуправление моделями

Световые эффекты

Связь по проводам и не только.

Телевидение

Телефония

Узлы цифровой электроники

Фототехника

Шпионская техника

Реклама на KAZUS.RU

Последние поступления

Графический семиполосный эквалайзер-радуга на Arduino Nano и MSGEQ7

Источники:

http://arduinoplus.ru/blok-pitania-arduino/

http://www.drive2.ru/b/489421763654975830/

http://kazus.ru/shemes/showpage/0/1233/1.html

http://xn--18-6kcdusowgbt1a4b.xn--p1ai/%D1%83%D0%BB%D1%8C%D1%82%D1%80%D0%B0%D0%B7%D0%B2%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B9-%D0%B4%D0%B0%D1%82%D1%87%D0%B8%D0%BA-%D0%B0%D1%80%D0%B4%D1%83%D0%B8%D0%BD%D0%BE/

Ссылка на основную публикацию