Как работает люминесцентная лампа советы электрика

Принцип работы люминесцентной лампы

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века. В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет. Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера. Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг. Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества. В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер. Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода. Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер. При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов. Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов. Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается. После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

Принцип работы ламп дневного света

Люминесцентные осветительные приборы являются уникальным сочетанием эффективности и экономного использования электрической энергии. Потолочные и настенные лампы дневного света применяются для растений, освещения рабочей поверхности и жилых комнат.

Плюсы и минусы

Энергосберегающие газоразрядные люминесцентные лампы – это модели осветительных приборов для создания дневного света в помещениях, где нет солнечных лучей. Если модели накаливания или диодные не используют для горения специальные соединения газов, то люминесцентные излучают свет благодаря реакции смеси газов, которые находятся в колбе с фитилем.

Фото — светильники дневного света

Ранее считалось, что такие лампы приносят вред зрению, и они редко применялись в бытовых условиях. В большинстве случаев, ими оборудовали производственные помещения (для склада, гаража). Но специальные газовые смеси, в которые входит галофосфат кальция позволяют произвести спокойные желтые лучи, которые отлично воспринимаются глазными кристалликами.

Достоинства ламп дневного света:

  1. Флуоресцентные модели могут обеспечить световую отдачу, которая будет гораздо превышать показатель у ламп накаливания;
  2. Несмотря на яркое свечение, они экономят электроэнергию;
  3. Плафоны часто изготавливаются из прочных материалов, которые являются довольно прочными. Они могут не разбиться даже при падении;
  4. Долговечность газоразрядных светильников в разы больше, чем обычных;
  5. В данный момент у этих приборов освещения довольно широкая цветовая температура. Если раньше они выпускались исключительно низкой (свет был яркого белого цвета), то сейчас в продаже можно найти желтые и естественные варианты.

Недостатки:

  1. Утилизация ламп дневного света может выполняться только специалистами, либо если их сдать в определенные учреждения, т. к. в состав газовой смеси входят опасные для организма компоненты (к примеру, газ фосфор или ртутные соединения). В отличие от их аналогов без газа, их нельзя просто выбросить в мусорное ведро, а для демонтажа нужно вызывать специальных рабочих;
  2. Как и некоторые светодиодные светильники, люминесцентная лампа дневного света не включается сразу, она несколько секунд мигает, а после нагрева газоразрядной смеси происходит полное включение;
  3. Можно вставлять только в специальные патроны;
  4. Любая модель немного гудит, а иногда и моргает во время работы;
  5. Не всегда можно осуществить подключение лампы естественного дневного света своими руками, требуется электронная схема. В некоторых случаях нужен довольно серьезный подход, чтобы обеспечить монтаж и работу светильника. В то время как простой экономный светильник можно вкрутить в патрон в течение нескольких минут.

Бывают разные виды осветительных приборов. Их можно классифицировать по мощности, температуре и форме. В частности, сейчас наибольшей популярностью пользуются:

  1. Линейные варианты (вытянутая электрическая модель, подойдет для освещения коридоров или официальных кабинетов);
  2. Кольцевые (их еще называют круглыми). Идеально подходят для освещения жилых помещений и кухни.

Иногда они распределяются по типу установки. Например, могут быть переносные, подвесные и настенные предложения, которые можно закрепить на любой поверхности. Сейчас в особенности популярная аккумуляторная настольная лампа дневного света, которая позволяет в любом углу комнаты обеспечить естественное мягкое свечение.

Фото — использование

Принцип работы

Лампа дневного света работает благодаря наличию дугового разряда между двумя электродами, которые необходимы для её питания. Внутри колба заполнена газовой смесью из инертных компонентов, в том числе, фосфора и ртути. Освещение обеспечивается благодаря тому, что когда электрический ток проходит через газовое пространство, смесь загорается и начинает производить ультрафиолетовое излучение, практически идентичное натуральному.

Как известно, ультрафиолетовое излучение незаметно для человеческого глаза, поэтому необходим специальный компонент, который сможет сделать свет видимым. Для этого используется вещество, которым покрывается корпус изнутри, чаще всего это производные кальция или цинка. Оно поглощает ультрафиолет и производит видимый световой поток. Светильники в зависимости от вида этого вещества, могут излучать разный цвет: теплый или холодный.

Если прибор мерцает при работе, это значит, что есть определенные проблемы с дуговым разрядом. Для контроля горения электродов используется своеобразный держатель или балласт, который контролирует поток направленных частиц. Устройство лампы дневного света таково, что для включения ток должен пройти через катод, нагреть его и далее удерживать температуру контактов на определенном уровне.

Маркировка

Для того чтобы выбрать нужную модель светильника, нужно знать, как расшифровывается маркировка ламп дневного света. Современные промышленные модели обозначаются кодом, который состоит из трех пунктов:

  1. На первом месте расположено определение индекса свечения. В зависимости от того, какой указан показатель, можно определить, как горит лампа. Чем выше цифра – тем более естественный свет получится в итоге;
  2. Следующие числа помогут определить конкретные показатели температуры, в большинстве случаев, также указывается люмены и мощность светильника.

Но отечественные производители посчитали, что такая маркировка будет сложно читаться, и сейчас в продаже есть более простые и понятные модели типа ЛБ. Эти виды не отличаются от импортных за исключением обозначения.

Л – первая буква, означает «люминесцентное свечение»;

Следующие буквы могут быть такими:

  • Б – белый цвет;
  • Х – холодный;
  • Т – теплый. Выходит, лампа ЛБТ – это холодный белый светильник.

Иногда также можно увидеть букву Е (естественный иди дневной). Нужно отметить, что именно с такой цветопередачей производится любая дневная автомобильная фара, но только для авто нужна кругла светодиодная модель. Еще есть типы для особых случаев, скажем, для освещения выставок нужны ЦЦ – особо яркие.

Как подключить лампу

Для того, чтобы подсоединить лампу, необходимо использовать довольно дорогой дроссель, который является слабой частью устройства. Его нити часто перегорают, а поменять их очень сложно. Поэтому сейчас многие электрики используют бездроссельное подключение ламп дневного света, при котором их характеристики не изменяются, но зато продлевается срок эксплуатации. Для его воспроизведения Вам понадобится схема:

Фото — бездроссельное соединение

Также перед тем, как подключить лампу дневного света, нужно купить все нужные радиоэлементы.

Фото — элементы для схемы

Предлагаем ознакомиться со схемами, где для подключения энергосберегающей лампы дневного естественного света не нужен трансформатор и стартер, вместо них потребуется конденсатор. Она тогда включается так:

Фото — подключение без стартера

Нужно быть осторожным, если запуск производится таким образом. Следите за тем, чтобы не потемнели провода контактов, иначе им потребуется замена. Нужно отметить, что у этой схемы есть серьезный недостаток – если зажечь лампу таким образом, то её управление будет невозможным.

Видео: как зажеть лампу дневного света без дросселя

Проверка и ремонт светильников

В случае, если лампа перегорела, её отремонтировать очень сложно, все же это вполне реально. Для начала нужно выяснить, в чем именно неисправность работы. Для того осуществляется проверка дросселя ламп дневного света. Нужно использовать контрольный светильник накаливания. Подключаете два провода от контактов в цоколь проверочной, и включаете конструкцию в сеть. Если пускатель цел, то контрольная модель начинает греть в полную силу, иногда она немного коротит.

При необходимости также можно осуществить ремонт дросселя лампы, но тогда нужно обращать внимание на мощность прибора дневного света, спектр излучения и размеры проводов (их сечения). Если подсоединить несоответствующие части – то она гореть не будет.

При полной неисправности всегда можно купить новые лампы дневного света, тем более их цена часто довольно доступная. Продажа осуществляется в любых магазинах электрической техники и комплектующих. Особой популярностью пользуются китайские Осрам (Osram) и Филипс (Philips), а также отечественные ЭПРА и ОКПД. При покупке всегда обращайте внимание на технические характеристики выбранных моделей, а также их потребление электроэнергии.

Что такое КЛЛ, как работает и как починить, схемы, преимущества и недостатки

В статье узнаете что такое компактная люминесцентная лампа (КЛЛ), как работает, объяснение схемы, преимущества и недостатки и ремонт ламп своими руками.

Мы все были свидетелями эпохи, когда лампочки были заменены на лучшую альтернативу, известную как компактная люминесцентная лампа (КЛЛ). КЛЛ отлично сберегает энергию.

Что такое компактная люминесцентная лампа (КЛЛ)

Термин «КЛЛ» означает компактная люминесцентная лампа. Он также известен, как компактный люминесцентный свет, энергосберегающий свет и компактная люминесцентная лампа.

Первоначально КЛЛ был разработан для замены лампы накаливания с точки зрения ее компактности и энергоэффективности. Базовая конструкция КЛЛ состоит из трубки, которая изогнута / спиральна, чтобы поместиться в пространство лампы накаливания, и компактного электронного балласта (дросселя) в основании лампы.

Как работает компактная люминесцентная лампа (КЛЛ) — принцип работы

КЛЛ использует вакуумную трубу, которая в принципе такая же, как и у полосковых ламп. Трубка имеет два электрода на обоих концах, обработанных барием. Катод имеет температуру около 900ºC и генерирует пучок электронов, который дополнительно ускоряется за счет разности потенциалов между электродами.

Эти ускоренные электроны сталкиваются с атомами ртути и аргона, что, в свою очередь, приводит к возникновению низкотемпературной плазмы. Этот процесс инициирует излучение Ртути в ультрафиолетовой форме. Внутренняя поверхность трубки содержит «Люминофор», функция которого заключается в преобразовании ультрафиолетового света в видимый свет.

Эта трубка питается от источника переменного тока, что облегчает изменение функциональности анода и катода. КЛЛ также состоит из преобразователя режима с переключением. Он работает на очень высокой частоте и служит заменой дросселя и узла стартера.

Схема компактной люминесцентной лампы (КЛЛ)

Плата КЛЛ довольно компактна и помещается в основание держателя. Несмотря на компактность, он эффективно выполняет требования дросселя. Схема КЛЛ объясняется в последующих пунктах.

Ключевые компоненты печатной платы КЛЛ

Печатная плата КЛЛ содержит следующие ключевые компоненты:

  • Мостовой выпрямитель из диода 1Н-4007
  • Подавитель помех
  • Конденсатор фильтра
  • Предохранитель
  • Точка снабжения

Объяснение схемы КЛЛ

Работу КЛЛ можно разделить на две широкие фазы:

  • Начальная фаза
  • Нормальная фаза

Начальная фаза

Стартовый сегмент состоит из динистора, C2, D1 и R6. Компоненты D3, R3, D2 и R1 работают как схема защиты, а остальные как цепь нормальной работы. Вы должны помнить следующую терминологию:

Динистора, C2 и R6 посылают импульс напряжения на базу транзистора Q2, в результате чего он получает пороговое значение и начинает работать. Как только операция начинается, диод D1 блокирует весь участок. Конденсатор С2 также разряжается (после полной зарядки) каждый раз, когда работает транзистор Q2.

Поэтому после его первого запуска осталось недостаточно энергии для повторного открытия Динистора. Далее транзисторы возбуждаются с помощью трансформатора TR1. Когда напряжение повышается от резонансного контура (L1, TR1, C3 и C6), трубка загорается, как только резонансное напряжение определяется конденсатором C3 (который питает нити). На данный момент напряжение C3 превышает 600В.

Нормальная фаза

Сразу после ионизации газа, присутствующего в вакуумной трубе, выполняется практическое замыкание конденсатора С3. Это приводит к понижению напряжения. После этого С6 начинает движение чейнджером. Этот чейнджер генерирует очень небольшое напряжение, но достаточно, чтобы лампа работала во включенном состоянии.

При нормальном рабочем состоянии, если транзистор переходит в состояние ОТКРЫТО, ток, подаваемый на TR1, продолжает увеличиваться до насыщения сердечника трансформатора, и, таким образом, подача на базу падает, в результате чего он закрывает транзистор.

Сразу после этого процесса второй транзистор возбуждается обратной обмоткой TR1, и процесс продолжается.

Преимущества компактной люминесцентной лампы (КЛЛ)

Преимущества КЛЛ заключаются в следующем:

  • Это энергоэффективность
  • Он имеет более высокий срок службы (почти в пять-пятнадцать раз) по сравнению со старыми лампами накаливания.
  • Он имеет меньшую номинальную мощность (почти 80 процентов) по сравнению со старыми лампами накаливания.
  • Это низкая стоимость жизненного цикла. Несмотря на то, что он имеет более высокую покупную цену, чем лампа накаливания, он может сэкономить в пять раз больше покупной цены на электроэнергию в течение срока службы лампы.

Недостатки компактной люминесцентной лампы (КЛЛ)

  • Это займет больше времени, чтобы начать
  • Начальная стоимость покупки высока.
  • Это не входит в темные оттенки также.
  • Как и все другие люминесцентные лампы, КЛЛ содержат ртуть, что затрудняет их утилизацию.

Как легко повторно использовать или восстановить поврежденный КЛЛ

Компактная люминесцентная лампа (КЛЛ) в настоящее время используется во всем мире. Во всем мире это нормальная практика — выбрасывать поврежденный КЛЛ и покупать новые. Но, что интересно, его можно повторно использовать / ремонтировать. Повторное использование / ремонт поврежденного КЛЛ довольно легко. Ниже вы узнаете, как легко повторно использовать ваш поврежденный КЛЛ, с пошаговым объяснением метода.

Методы повторного использования поврежденных КЛЛ

Поврежденный КЛЛ может быть повторно использован с помощью этих двух методов:

  • Повторно используйте плату КЛЛ в качестве балласта (дросселя) для другого лампового светильника
  • Ремонт КЛЛ с помощью основных электрических инструментов

Повторно используйте плату КЛЛ в качестве балласта (дросселя) для другого лампового светильника

Давайте возьмем пример 23-ваттной Philips КЛЛ. Теперь все, что нам нужно, это:

Шаг 1 — Извлечение КЛЛ

Снимите старую крышку КЛЛ и проверьте внутреннюю цепь. Вы увидите четыре точки (припой) для каждой стороны лампы. Выньте лампу и проведите очистку контура спиртом.

ВНИМАНИЕ: НЕ ОТКРЫВАЙТЕ КЛЛ, КОТОРЫЕ ИСПОЛЬЗОВАЛИСЬ НЕДАВНО. ИХ КОНДЕНСАТОРЫ МОГУТ БЫТЬ ЗАРЯЖЕННЫМИ. ПОДОЖДИТЕ ДВА ЧАСА И ТОЛЬКО ПОТОМ ОТКРЫВАЙТЕ ЭТО.

Шаг 2 — Подключите печатную плату с ламповой лампой

Четыре провода с клеммами. Два на одной стороне и два других на другой стороне. Используйте изоляционную ленту для покрытия оголенных проводов и цепи.

Теперь ваш отремонтированный КЛЛ готов к использованию.

Ремонт КЛЛ с помощью основных электрических инструментов

Компактная люминесцентная лампа обычно выходит из строя из-за повреждения некоторых ее компонентов, таких как транзистор, конденсатор, диод, резистор или даже трансформатор. Эти детали, однако, имеют низкую стоимость и широко доступны.

Одним из наиболее распространенных дефектов в цепи КЛЛ является отказ конденсатора. Если предохранитель перегорел, он может повредить транзисторы и резисторы. Если стеклянная трубка повреждена, то также вы можете ее поменять. Все типы трубок КЛЛ доступны на рынке. Наиболее распространенный показатель:

  • 2U КЛЛ трубка — 20Rs
  • Трубка 3U КЛЛ- 30Rs
  • Спиральная трубка КЛЛ — 55-65Rs.

Шаг 1 — Отделение крышки

Откройте крышку КЛЛ. Это самая сложная часть ремонта. Имейте терпение и используйте отвертку, чтобы медленно открыть его, как показано на рисунке.

Шаг 2 — Идентификация неисправности / Ремонт в печатной плате CFL и трубе

Визуально осмотрите монтажную плату. Если вы заметили какой-либо деформированный / сгоревший конденсатор / диод / резистор, удалите припой, извлеките его из печатной платы и проведите замену более новым компонентом того же значения или замените его наилучшим возможным вариантом с номинальным напряжением не менее или выше 250 вольт.

Проверьте диоды на его состояние. Он будет действовать, если смещен вперед, и не будет действовать, если смещен назад.

Проверьте транзисторы. Если вы не можете это сделать, то обратитесь к электрику и попросите его проверить / заменить его.

Внимательно проверьте также резисторы. Если резистор перегорел, выньте его и проверьте его омическое значение с помощью мультиметра. Обычно наблюдается, что 30% идентификаторов отказа КЛЛ вызваны обрывом цепи резистора.

Если все упомянутые компоненты работают нормально, то, наконец, проверьте целостность трубки. Замените его, если наблюдается разомкнутая цепь.

Шаг 3 — Проверка схемы перед установкой

Проверьте цепь, подавая основное питание в цепи i / p.

Шаг 4 — Окончательная сборка

Упакуйте крышку на пробирке. Вы можете запечатать его с помощью изоленты.

Зачем ждать сейчас. Проверьте ваш отремонтированный КЛЛ.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Источники:

http://www.asutpp.ru/princip-raboty-lamp-dnevnogo-sveta.html

http://meanders.ru/chto-takoe-kll-kak-rabotaet-i-kak-pochinit-shemy-preimushhestva-i-nedostatki.shtml

http://simplelight.info/istochniki-osveshheniya/princip-raboty-lyuminescentnoy-lampy.html

http://electric-220.ru/news/kak_rabotaet_transformator/2017-01-15-1157

Ссылка на основную публикацию