Сопротивление обмоток электродвигателя таблица советы электрика

Как проверить состояние обмотки электрического двигателя

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Проверка обмоток электродвигателя. Неисправности и методы проверок

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Измерение сопротивления обмоток электродвигателей постоянному току

Цель проведения измерений сопротивления обмоток электродвигателей постоянному току – выявление дефектов (некачественных соединений, витковых замыканий), ошибок в схеме соединений, а также уточнение параметров, используемых при расчетах и наладке режимов, регуляторов и др.

Измерения, особенно у крупных электродвигателей, следует выполнять с особой тщательностью и высокой точностью. Сопротивление обмоток электродвигателей постоянному току измеряют либо с помощью амперметра и вольтметра, либо двойным мостом . Если сопротивление больше 1 Ома, то необходимая точность измерений достигается одинарным мостом .

У электродвигателей, имеющих только три вывода обмотки статора (соединение обмоток в звезду или треугольник выполнено внутри электродвигателя), сопротивление постоянному току измеряют между выводами попарно. Сопротивление отдельных фаз в этом случае определяется из следующих выражений:

1. Для соединения в звезду (рис. 1,а)

При одинаковых значениях измеренных сопротивлений:

2. Для соединения в треугольник (рис. 1,б)

При одинаковых значениях измеренных сопротивлений:

Рис. 1. Схемы измерения сопротивления обмоток трёхфазных электродвигателей при соединении обмоток: а – в звезду; б – в треугольник

При измерении сопротивления особое значение имеет правильное определение температуры обмотки. Для измерения температуры применяют как заложенные температурные индикаторы, так и встраиваемые термометры и температурные индикаторы, которые должны быть введены не позднее чем за 15 мин до начала измерения сопротивления.

Для измерения температуры обмоток электродвигателей мощностью до 10 кВт устанавливают один термометр или температурный индикатор, для электродвигателей мощностью до 100 кВт – не менее двух, для электродвигателей мощностью от 100 до 1000 кВт – не менее трех, для электродвигателей свыше 1000 кВт – не менее четырех.

В качестве температуры обмоток принимается среднее арифметическое измеренных значений. При измерении сопротивлений обмоток электродвигателя в практически холодном состоянии температура обмоток не должна отличаться от температуры окружающей среды более чем на ± 3 °С.

Если невозможно непосредственно измерить температуру обмоток, электродвигатель должен находиться в нерабочем состоянии до измерения сопротивления обмоток в течение времени, достаточного для того, чтобы все части электродвигателя практически приняли температуру окружающей среды. Изменение температуры окружающей среды за это время не должно быть более ± 5 °С. В качестве температуры обмоток электродвигателя при этом принимают температуру окружающей среды в момент измерения сопротивлений. Измерение сопротивления повторяют несколько раз.

Измерения с помощью амперметра и вольтметра выполняют три раза при различных значениях тока. При применении мостовых схем перед каждым измерением следует нарушать равновесие моста. Результаты измерений одного и того же сопротивления не должны отличаться от среднего более чем на 0,5 %, в качестве действительного сопротивления принимается среднее арифметическое результатов всех измерений, удовлетворяющих этому требованию.

Результаты измерений по отдельным фазам сравниваются между собой, а также с результатами предыдущих (в том числе заводских) измерений. Для сравнения результатов измерений, проведенных при различных температурах обмоток, измеренные значения приводят к одной температуре (обычно к 15 или 20 °С).

Пересчёт сопротивлений с одной температуры на другую может быть произведён по выражениям: (для алюминия):

где Rt1 и Rt2 – сопротивления обмоток при температурах и соответственно.

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.8. Нормы приемо-сдаточных испытаний

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. ¶

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытательное напряжение, кВ

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

Реостат и пускорегулировочный резистор

Резистор гашения поля синхронного электродвигателя

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

Синхронная частота вращения электродвигателя, Гц

Допустимая вибрация, мкм

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Источники:

http://electrosam.ru/glavnaja/jelektrotehnika/proverka-obmotok-elektrodvigatelia/

http://electricalschool.info/main/naladka/462-izmerenie-soprotivlenija-obmotok.html

http://www.elec.ru/library/direction/pue/razdel-1-8-4.html

http://electrik.info/main/sekrety/1050-izmerenie-soprotivleniya-petli-faza-nol.html

Ссылка на основную публикацию