Схемы светодиодных ламп советы электрика

Светодиодная лампа своими руками

Для конструкции нам понадобится:
– часть лампы типа «экономка», та что с цоколем;
– светодиоды 5630;
– 4 диода 1n4007;
– электролитический конденсатор от 3,3 мкФ;
– резистор R1 – 470к, 0.25 ватт
– резистор R2 – 150 ом, 0.25 ватт
– резистор R3 – о нем позже.
– конденсатор типа К73-17 емкостью от 0.22 мкФ и рабочим напряжение от 340 В;

Схема простая с гасящим конденсатором.
Светодиоды в количестве 8 штук.

Схема для подбора емкости конденсатора.

Регулируемый резистор R3. Его устанавливал в максимальное сопротивление перед включением, чтоб стрелка прибора не зашкаливала. Потом сводил к минимуму. Конденсатор С2 с напряжением от 340В. Я при тестах ставил 10 мкФ, но из-за размеров он не влез в корпус, установил номиналом меньше. Зачем такое большое напряжение? Это на случай обрыва цепи со светодиодами. Так как напряжение подскочит до напряжения выше чем переменное сетевое в 1.41 раза(230*1,41=324,3В).

Я же руководствовался замерам проведенным на испытательной схеме с миллиамперметром.
Плату делал по технологии ЛУТ. Светодиоды смд.
Плата в формате lay 6 версии прилагается

Травим плату, сверлим отверстия и лудим.

Монтируется плата в цокольную часть корпуса.
Диаметр корпуса экономки 38 мм, плата 36 мм.

Конденсатор С1 припаивается навесом к резистору R1. Опять же из-за ограничения корпуса. Резистор R2 вынесен за пределы платы и выполняет роль «поддтяжки». За счет его плата плотно прижимается к корпусу.

Припаиваем резистор и провод к цоколю.

Первое включение производил через лампочку. Потребление лампы составило 7.45 ватт. По световому потоку замерить нет возможности, но на глаз более 3 ватт (если сравнивать с рядом лежащей покупной).

У схемы отсутствует гальваническая развязка от сети. Будь те осторожны при экспериментах и эксплуатации. Так же соблюдайте осторожность при установке лампы. Монтаж производить при отключенном выключателе.

Лампа уже работает около полутора лет при постоянном включении/выключении.

На видео все можно рассмотреть в деталях:

Схема светодиодной лампы на 220 в

В отличие от обычных ламп накаливания, полупроводниковые лед светильники потребляют намного меньшие объёмы электроэнергии и относятся в связи с этим к категории экономичных. При этом долговечность их эксплуатации для некоторых моделей осветителей возрастает в несколько раз. С образцами современных моделей светодиодных лед ламп можно ознакомиться на рисунке, приводимом ниже.

Схема светодиодной лампы на 220 в спроектирована таким образом, что напряжение на её выходе посредством драйвера понижается до требуемой величины, которая, как правило, не превышает 1,8-4,0 Вольта (на каждом из светодиодов).

Принцип действия светодиодных ламп

Светодиодная лампочка представляет собой полупроводниковый элемент, содержащий в своём составе несколько слоёв, ответственных за преобразование текущего через них тока в видимый свет.

Важно! При изменении состава этого слоя в нём генерируется излучение определенного цвета (красного, зелёного, жёлтого или синего).

Поскольку лампы, в состав которых входят светодиоды, должны обеспечивать получение чистого дневного света, их разработчикам пришлось применить небольшую хитрость, заключающуюся в покрытии синего излучателя жёлтым люминофором. В такой конструкции под воздействием фотонов синего диапазона жёлтый люминофор начинает испускать собственное бесцветное излучение.

Типы светодиодов

За счёт различных подходов к сборке полупроводниковых чипов удалось создать следующие разновидности светодиодных излучателей:

  • DIP – светодиодные лампы, изготавливаемые на основе кристалла с размещённой сверху линзой и двумя подводящими проводниками. Этот вариант наиболее распространён на практике и используется для организации подсветки в различных световых устройствах;
  • Так называемая «Пиранья», частично напоминающая предыдущую конструкцию, но имеющая четыре вывода. Увеличение числа контактов повышает её надёжность и способствует улучшению отвода тепла (смотрите рисунок ниже);

Дополнительная информация. Такие светодиоды по большей части применяются в автомобилестроении.

  • SMD-светодиодные излучатели могут размещаться на плоских поверхностях, за счет чего удается уменьшить габариты светильника, а также улучшить теплоотводящие свойства. Они выпускаются в самых различных исполнениях и применяются в современных источниках светового излучения;
  • Изделия, изготавливаемые по СОВ технологиям, согласно которым чип впаивается непосредственно в плату. За счет такого устройства полупроводниковый лед переход надёжно защищается от окисления и перегрева. Одновременно с этим существенно повышается интенсивность диодного свечения.

Обратите внимание! Особенность перечисленных выше исполнений состоит в том, что в случае перегорания светодиода его придётся менять полностью, поскольку отремонтировать эти изделия путём замены отдельного чипа невозможно.

Ещё один недостаток таких светодиодов – их маленький размер, что вынуждает собирать их в группы по несколько штук. Кроме того, встроенный в них кристалл постепенно стареет, вследствие чего яркость лед излучателя со временем снижается. Далее будет рассмотрено устройство светодиодной лампы на 220в.

Устройство LED-диодов

Устройство светодиодной лампы на 220 вольт не отличается большой сложностью и вполне может быть рассмотрено даже на любительском уровне. Классическая светодиодная лампа на 220 вольт включает в свой состав следующие обязательные элементы:

  • Несущий корпус с цоколем;
  • Специальную рассеивающую линзу;
  • Отводящий тепло радиатор;
  • Модуль светодиодов LED;
  • Драйверы светодиодной лампы;
  • Блок питания.

Ознакомиться со строением LED-лампы на 220 вольт (технология СОВ) можно на размещённом ниже рисунке.

Этот светодиодный прибор изготавливается как единое целое и содержит в своей конструкции большое количество однородных кристаллов, распаиваемых при сборке с образованием многочисленных контактов. Для его подключения к драйверу достаточно присоединить всего одну из контактных пар (остальные кристаллы подключены параллельно).

По своей форме эти изделия могут быть круглыми и цилиндрическими, а к сети они подсоединяются посредством специального резьбового или штырькового цоколя. Для светодиодной системы общего пользования, как правило, выбираются светильники, показатель цветовой температуры которых составляет 2700К, 3500К или 5000К (при этом градации спектра могут принимать любые значения). Такие приборы довольно часто применяются в декоративных целях и для освещения рекламных баннеров и щитов.

Рассмотрим отдельные модули светодиодной лампы более подробно.

Драйвер

В упрощённом виде схема драйвера, используемого для питания лампы от сети 220 Вольт, выглядит, как это изображено на рисунке ниже.

Количество деталей в этом устройстве, выполняющем согласовательную функцию, относительно невелико, что объясняется особенностями схемного решения. Его электрическая схема содержит в своём составе два гасящих резистора R1, R2 и подключённые к ним по встречно-параллельному принципу светодиоды HL1и HL2.

Дополнительная информация. Такое включение ограничительных элементов обеспечивает защищённость схемы от обратных выбросов напряжения питания. Помимо этого, в результате такого включения частота поступающего на лампы сигнала возрастает вдвое (до 100 Гц).

Сетевое напряжение питания с действующим значением 220 Вольт подаётся в схему через ограничительный конденсатор С1, с которого оно поступает на выпрямительный мостик, а затем – непосредственно на лампу.

На заметку. Простота схемы согласующего устройства (драйвера) допускает возможность его ремонта своими руками.

Источник питания

Типовая схема источника питания LED-лампы изображена на рисунке, представленном ниже.

Эта часть осветительного прибора выполнена в виде отдельного блока и поэтому может свободно извлекаться из корпуса (с целью её ремонта своими руками, например). На входе схемы имеется выпрямительный электролит (конденсатор), после которого пульсации с частотой 100 Герц частично исчезают.

Резистор R1 необходим для образования цепочки разряда конденсатора при отключении схемы от источника питания.

Самостоятельный ремонт

В случае выхода из строя простейшего LED-осветителя, изготовленного на основе отдельных светодиодных элементов, его ремонт может быть осуществлён своими руками. Самостоятельный ремонт светодиодных ламп и устройств, электрические схемы которых были рассмотрены ранее, сводится к простой замене неисправных блоков и деталей.

Корпус изделия легко разбирается после того, как его аккуратно отделяют от цокольной части. Внутри конструкции располагается плата с рабочими светодиодами, количество которых отличается у разных моделей (смотрите фото ниже).

Обратите внимание! У широко распространённой модели лампы типа «MR 16», например, общее число светодиодов равно 27-ми 1,5 вольтовым элементам.

Для того чтобы получить доступ к печатной плате с размещенными на ней диодами, достаточно удалить защитную стеклянную линзу, аккуратно поддев её хорошо отточенной отверткой.

После разборки корпуса светодиодного изделия необходимо будет предпринять следующие шаги:

  • Обнаруженные ранее неисправные (несветящиеся) диоды после дополнительной проверки нужно будет заменить. Для оценки их исправности следует воспользоваться измерительным прибором (мультиметром), включённым в режим «Прозвонка»;

Дополнительная информация. Проверить исправность остальных элементов, которые содержит данная электросхема, можно путём подачи на них напряжения величиной от 1,5 до 2,5 Вольт (исправные диоды при подаче такого потенциала должны загораться).

  • При проверке потенциалами более 5-ти Вольт последовательно с проверяемым элементом включается ограничивающий резистор номиналом порядка 4,7-5,1 Ком;
  • В случае если все установленные в плату диоды исправны, но при горении постоянно мерцают, причиной этого может быть «пробой» конденсатора С1.

Для того чтобы убедиться в этом, следует проверить его номинальную ёмкость тем же мультиметром (о том, как это сделать, можно узнать в инструкции по применению прибора). Другой подход к решению данной проблемы предполагает простую замену конденсатора другим, заведомо исправным элементом, рассчитанным на напряжение не менее 400 Вольт.

Самостоятельное изготовление светильника

Изготовить осветитель на основе светодиодов своими руками, как говорится, «с нуля» – дело хлопотливое и не для всех подходящее. Проще сделать это, воспользовавшись уже отработавшим свой ресурс старым светильником подобного типа.

В этом случае самодельная светодиодная лампа будет набрана из новых элементов, запаянных на демонтированную из старого устройства или отремонтированную плату. Если на ней остались рабочие диоды, нужно будет заменить сгоревшие элементы новыми (желательно того же типа и конструкции).

Обратите внимание! При изготовлении фирменных ламп из соображений выгодности продаж рабочий ток отдельных светодиодов выбирается с предельно большим значением. При переделке такого устройства желательно впаять последовательно с каждым элементом ограничительное сопротивление порядка 1 Ком.

При необходимости для изготовления лампы своими руками можно использовать старую плату со схемой драйвера, заменив в ней все неисправные детали.

При отсутствии необходимых плат и деталей драйвер можно изготовить, ориентируясь на рассмотренную выше схему блока питания, совмещённого с преобразователем (смотрите рисунок выше). При доработке к ней следует добавить ещё один резистор (обозначим его как R3), используемый для разрядки конденсатора С2. В результате получится приведённая ниже схема.

Помимо резистора, в неё добавлены два типовых стабилитрона (VD2,VD3), обеспечивающих его шунтирование при обрыве цепи нагрузки.

Дополнительная информация. Если грамотно подобрать напряжение стабилизации ограничивающего диода, вполне можно будет обойтись одним стабилитроном.

Данная схема драйверного устройства рассчитана для подключения 20-ти бесцветных светодиодов определённого типа. Если их класс или общее количество будет иным, следует изменить номинал конденсатора С1 таким образом, чтобы нагрузочный ток в диодной цепочке был не менее 20-ти мА. Указанное его значение гарантирует достаточную яркость свечения этих приборов.

В качестве питающей драйвер схемы, как правило, используется узел, в состав которого не входит громоздкий трансформаторный элемент (такое включение называется «прямым»). Отсутствие трансформатора существенно упрощает сборку модуля и сокращает его размеры.

Важно! Но в этом случае реальна угроза попадания высокого напряжения на выход схемы (в случае пробоя ряда последовательно включённых элементов, например). Единственное утешение состоит в том, что такое случается крайне редко.

В заключительной части обзора отметим, что принципиальные схемы большинства из поступающих в продажу светодиодных изделий почти не отличаются одна от другой. Определённые различия наблюдаются лишь в типе используемых в них компонентов, а также в способе формирования выходного напряжения, осуществляемого драйвером.

Добавим к этому, что лампы на светодиодах, оснащённые специальными драйверами, надёжно защищаются от колебаний напряжения в сети, а входящий в их состав радиатор обеспечивает защиту изделия от перегрева. Применение самостоятельно изготовленных модулей за счёт их дополнительной доработки может существенно продлить сроки эксплуатации осветительных устройств, собранных на их основе.

Видео

Мощный светодиодный светильник своими руками — разработка, установка

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника

  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.

Перегоревшая лампочка

Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном . Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.

Фото: патрон лампы

Вставляем в него резистор на 100 Oм и два конденсатора по 220 нФ напряжением 400 В.

Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.

Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.

Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.

Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.

Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.

Готовая мини лампа

Далее дело за малым: припаиваем резистор на 100 Ом, он может подсоединяться к любой из плат, и изолируем клеем контакты.

Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.

Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.

Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.

Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком

. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

Как устроены светодиодные лампы

В статье рассказывается об устройстве светодиодных ламп. Рассматриваются несколько разных по сложности схем и даются рекомендации по самостоятельному изготовлению светодиодных источников света, подключаемых к сети 220 В.

Преимущества энергосберегающих ламп

Преимущества энергосберегающих ламп широко известны. В первую очередь это собственно низкое потребление энергии, а кроме того высокая надежность. В настоящее время наиболее широко распространены люминесцентные лампы. Такая лампа, потребляющая мощность 20 Ватт, дает такую же освещенность как стоваттная лампа накаливания. Нетрудно подсчитать, что экономия электроэнергии получается в пять раз.

В последнее время в производстве осваиваются светодиодные лампы. Показатели экономичности и долговечности у них намного выше, чем у люминесцентных ламп. В этом случае электроэнергии потребляется в десять раз меньше, чем лампами накаливания. Долговечность же светодиодных ламп может достигать 50-ти и более тысяч часов.

Источники света нового поколения, конечно, стоят дороже простых ламп накаливания, но потребляют значительно меньшую мощность и обладают повышенной долговечностью. Два последних показателя призваны скомпенсировать дороговизну ламп новых типов.

Практические схемы светодиодных ламп

В качестве первого примера можно рассмотреть устройство светодиодной лампы разработанной фирмой «СЭА Электроникс» с применением специализированных микросхем. Электрическая схема такой лампы показана на рисунке 1.

Рисунок 1. Схема светодиодной лампы фирмы «СЭА Электроникс»

Еще десять лет назад светодиоды можно было использовать только в качестве индикаторов: сила света составляла не более 1,5…2 микрокандел. Сейчас появились сверхяркие светодиоды, у которых сила излучения доходит до нескольких десятков кандел.

При использовании мощных светодиодов совместно с полупроводниковыми преобразователями появилась возможность создания источников света, выдерживающих конкуренцию с лампами накаливания. Подобный преобразователь и показан на рисунке 1. Схема достаточно проста и содержит небольшое количество деталей. Это достигнуто за счет применения специализированных микросхем.

Первая микросхема IC1 BP5041 – AC/DC преобразователь. Ее структурная схема представлена на рисунке 2.

Рисунок 2. Структурная схема BP5041.

Микросхема выполнена в корпусе типа SIP показанный на рисунке 3.

Преобразователь, подключенный к осветительной сети 220В, обеспечивает на выходе напряжение 5В при токе около 100 миллиампер. Подключение к сети производится через выпрямитель, выполненный на диоде D1 (в принципе возможно использование мостовой схемы выпрямителя) и конденсаторе C3. Резистор R1 и конденсатор C2 устраняют импульсные помехи. Смотрите также – Как подключить светодиодную лампу к сети 220 В.

Все устройство защищено предохранителем F1, номинал которого не должен превышать указанный на схеме. Конденсатор C3 предназначен для сглаживания пульсаций выходного напряжения преобразователя. Следует заметить, что выходное напряжение не имеет гальванической развязки от сети, что в данной схеме совсем не нужно, но требует особой внимательности и соблюдения правил техники безопасности при изготовлении и наладке.

Конденсаторы C3 и C2 должны быть на рабочее напряжение не менее 450 В. Конденсатор C2 должен быть пленочным или керамическим. Резистор R1 может иметь сопротивление в пределах 10…20 Ом, что достаточно для нормальной работы преобразователя.

Использование данного преобразователя позволяет отказаться от применения понижающего трансформатора, что значительно уменьшает габариты всего устройства в целом.

Отличительной особенностью микросхемы BP5041 является наличие встроенной катушки индуктивности как показано на рисунке 2, что позволяет уменьшить количество навесных деталей и в целом размеры монтажной платы.

В качестве диода D1 подойдет любой диод с обратным напряжением не менее 800 В и выпрямленным током не менее 500 мА. Таким условиям вполне удовлетворяет широко распространенный импортный диод 1N4007. на входе выпрямителя установлен варистор VAR1 типа FNR-10K391. Его назначение защита всего устройства от импульсных помех и статического электричества.

Вторая микросхема IC2 типа HV9910 представляет собой ШИМ стабилизатор тока для суперярких светодиодов. При помощи внешнего MOSFET транзистора ток может устанавливаться в пределах от нескольких миллиампер до 1А. Этот ток задается резистором R3 в цепи обратной связи. Микросхема выпускается в корпусах SO-8 (LG) и SO-16 (NG). Ее внешний вид показан на рисунке 4, а на рисунке 5 структурная схема.

Рисунок 4. Микросхема HV9910.

Рисунок 5. Структурная схема микросхемы HV9910.

С помощью резистора R2 частота внутреннего генератора может изменяться в диапазоне 20…120 КГц. При указанном на схеме сопротивлении резистора R2 она будет около 50 КГц.

Дроссель L1 предназначен для накопления энергии в то время, когда транзистор VT1 открыт. Когда транзистор закроется, то энергия, накопленная в дросселе, через высокоскоростной диод Шоттки D2 отдается светодиодам D3…D6.

Здесь самое время вспомнить о самоиндукции и правиле Ленца. Согласно этому правилу индукционный ток имеет всегда такое направление, что его магнитный поток компенсирует изменения внешнего магнитного потока, которое (изменение) вызвало этот ток. Поэтому направление ЭДС самоиндукции имеет направление противоположное направлению ЭДС источника питания. Именно поэтому светодиоды включены в обратную сторону по отношению к питающему напряжению (вывод 1 микросхемы IC2, обозначенный на схеме как VIN). Таким образом светодиоды излучают свет за счет ЭДС самоиндукции катушки L1.

В данной конструкции применены 4 сверхярких светодиода типа TWW9600, хотя вполне возможно применение других типов светодиодов производства других фирм.

Для управления яркостью светодиодов в микросхеме имеется вход PWM_D, ШИМ – модуляция от внешнего генератора. В этой схеме такая функция не используется.

При самостоятельном изготовлении такой светодиодной лампы следует воспользоваться корпусом с винтовым цоколем размера E27 от негодной энергосберегающей лампы, мощностью не менее 20 Вт. Внешний вид конструкции показан на рисунке 6.

Рисунок 6. Самодельная светодиодная лампа.

Хотя описанная схема достаточно проста, рекомендовать ее для самостоятельного изготовления можно не всегда: либо не удастся купить указанные на схеме детали, либо недостаточная квалификация сборщика. Некоторые просто могут испугаться: «А вдруг у меня не получится?». Для подобных ситуаций можно предложить еще несколько вариантов более простых как по схемотехнике, так и в вопросе приобретения деталей.

Простая светодиодная лампа для изготовления в домашних условиях

Более простая схема светодиодной лампы показана на рисунке 7.

На этой схемы видно, что для питания светодиодов используется мостовой выпрямитель с емкостным балластом, который ограничивает выходной ток. Такие источники питания экономичны и просты, не боятся коротких замыканий, их выходной ток ограничивается емкостным сопротивлением конденсатора. Подобные выпрямители часто называют стабилизаторами тока.

Роль емкостного балласта на схеме выполняет конденсатор C1. При емкости 0,47 мкФ рабочее напряжение конденсатора должно быть не менее 630В. Емкость его рассчитана так, чтобы ток через светодиоды был около 20 мА, что является для светодиодов оптимальным значением.

Пульсации выпрямленного мостом напряжения сглаживаются электролитическим конденсатором C2. Для ограничения зарядного тока в момент включения служит резистор R1, который также выполняет функцию предохранителя в аварийных ситуациях. Резисторы R2 и R3 предназначены для разряда конденсаторов C1 и C2 после отключения устройства от сети.

Для уменьшения габаритов рабочее напряжение конденсатора C2 выбрано всего 100 В. В случае обрыва (перегорания) хотя бы одного из светодиодов конденсатор C2 зарядится до напряжения 310 В, что неизбежно приведет к его взрыву. Для защиты от подобной ситуации этот конденсатор зашунтирован стабилитронами VD2, VD3. Их напряжение стабилизации может быть определено следующим образом.

При номинальном токе через светодиод в 20 мА на нем создается падение напряжения в зависимости от типа в пределах 3,2…3,8 В. (Подобное свойство в некоторых случаях позволяет использовать светодиоды в качестве стабилитронов). Поэтому нетрудно подсчитать, что если в схеме используется 20 светодиодов, то падение напряжения на них составит 65…75 В. Именно на таком уровне будет ограничено напряжение на конденсаторе C2.

Стабилитроны следует выбрать так, чтобы суммарное напряжение стабилизации было несколько выше падения напряжения на светодиодах. В этом случае при нормальном режиме работы стабилитроны будут закрыты, и на работу схемы влиять не будут. Указанные на схеме стабилитроны 1N4754A имеют напряжение стабилизации 39 В, а включенные последовательно – 78 В.

При обрыве хотя бы одного из светодиодов стабилитроны откроются и напряжение на конденсаторе C2 будет стабилизировано на уровне 78 В, что явно ниже рабочего напряжения конденсатора С2, поэтому взрыва не произойдет.

Конструкция самодельной светодиодной лампы показана на рисунке 8. как видно из рисунка она собрана в корпусе от негодной энергосберегающей лампы с цоколем Е-27.

Печатная плата, на которой размещаются все детали выполняется из фольгированного стеклотекстолита любым из доступных в домашних условиях способов. Для установки светодиодов на плате просверлены отверстия диаметром 0,8 мм, а для остальных деталей 1,0 мм. Чертеж печатной платы показан на рисунке 9.

Рисунок 9. Печатная плата и расположение деталей на ней.

Расположение деталей на плате показано на рисунке 9в. Все детали, кроме светодиодов устанавливаются со стороны платы, где нет печатных дорожек. На этой же стороне устанавливается перемычка, также показанная на рисунке.

После установки всех деталей со стороны фольги устанавливаются светодиоды. Монтаж светодиодов следует начинать от средины платы, постепенно передвигаясь к периферии. Светодиоды должны быть запаяны последовательно, то есть плюсовой вывод одного светодиода соединяется с отрицательным выводом другого.

Диаметр светодиода может быть любым в пределах 3…10 мм. При этом следует выводы светодиодов оставлять длиной не менее 5 мм от платы. В противном случае светодиоды можно просто перегреть при пайке. Длительность пайки, как рекомендуют во всех руководствах, не должна превышать 3-х секунд.

После того, как плата будет собрана и налажена, ее выводы надо подпаять к цоколю, а саму плату вставить в корпус. Кроме указанного корпуса возможно применение более миниатюрного корпуса, однако при этом придется уменьшить размеры печатной платы, не забывая, однако, о габаритах конденсаторов С1 и С2.

Самая простая схема светодиодной лампы

Такая схема показана на рисунке 10.

Рисунок 10. Самая простая схема светодиодной лампы.

Схема содержит минимальное количество деталей: всего 2 светодиода и гасящий резистор. На схеме видно, что светодиоды включены встречно – параллельно. При таком включении каждый из них защищает другой от обратного напряжения, которое у светодиодов невелико, и напряжение сети явно не выдержит. Кроме того такое двойное включение увеличит частоту мерцания светодиодной лампы до 100 Гц, что будет не заметно на глаз и не будет утомлять зрение. Здесь достаточно вспомнить, как в целях экономии подключали через диод обычные лампы накаливания, например, в подъездах. На зрение они действовали весьма неприятно.

Если нет в наличии двух светодиодов, то один из них можно заменить обычным выпрямительном диодом, который защитит излучающий диод от обратного напряжения сети. Направление его включения должно быть тем же, что и у недостающего светодиода. При таком включении частота мерцания светодиода составит 25 Гц, что будет заметно на глаз, как уже было описано чуть выше.

Для ограничения тока через светодиоды на уровне 20 мА резистор R1 должен иметь сопротивление в пределах 10…11 КОм. При этом его мощность должна быть не менее 5 ватт. Для уменьшения нагрева его можно составить из нескольких, лучше всего трех, резисторов мощностью 2 Вт.

Светодиоды можно применить те же, что были упомянуты в предыдущих схемах или какие удастся приобрести. При покупке следует точно узнать марку светодиода, чтобы определить его номинальный прямой ток. Исходя из величины этого тока, и подбирается сопротивление резистора R1.

Конструкция лампы, собранная по этой схеме мало отличается от двух предыдущих: ее также можно изготовить в корпусе от негодной энергосберегающей люминесцентной лампы. Простота схемы даже не предполагает наличия печатной платы: детали могут быть соединены навесным монтажом, поэтому, как говорят в таких случаях, конструкция произвольная.

Источники:

http://amperof.ru/osveshenie/lampy/shema-svetodiodnoj-lampy-220-v.html

http://www.asutpp.ru/svetodiodnyj-svetilnik-svoimi-rukami.html

http://electrik.info/main/praktika/299-kak-ustroeny-svetodiodnye-lampy.html

http://profazu.ru/provodka/ustanovochnye/shtepselnaya-rozetka.html

Ссылка на основную публикацию