Что значит асинхронный двигатель советы электрика

Принцип работы асинхронного двигателя

Асинхронные двигатели, подключаемые к однофазной или трехфазной сети переменного тока, используются для привода механизмов бытовой техники и промышленного оборудования. Установленный на подшипниковых опорах ротор вращается с частотой, отличной от количества оборотов магнитного поля, создаваемого зафиксированными обмотками статора.

Что такое асинхронный двигатель

Асинхронный электродвигатель представляет собой машину, преобразующую электрическую энергию в механическую. Агрегат состоит из металлического немагнитного корпуса цилиндрической конфигурации, на внешней поверхности которого расположены ребра для охлаждения. Внутри кожуха находится обмотка, подключаемая к бытовой или промышленной сети переменного тока. С торцов корпус закрыт крышками, в которых предусмотрены постели для подшипниковых опор. Могут использоваться подшипники качения или скольжения с ручной или автоматической подачей масла.

Ротор, изготовленный из электротехнической стали установлен на подшипниках, обеспечивающих снижение трения и поддерживающих равномерный интервал между внешней поверхностью детали и внутренней плоскостью статора. В схеме узла предусмотрена обмотка (короткозамкнутого или фазного типа). В короткозамкнутых конструкциях отсутствуют коллектор и щетки, что увеличило надежность мотора. В фазных предусмотрено использование коллекторного узла, что позволяет повысить пусковой вращающий момент.

История создания

Теоретическая база асинхронной электрической установки была разработана в 1888 г. итальянским техником Г. Феррарисом и ученым Николой Тесла, причем специалисты вели исследования параллельно. Изначальные расчеты показали низкий КПД устройства, но российский инженер М.О. Доливо-Добровольский опроверг это предположение. Уже в 1889-90 гг. изобретатель из России получает несколько патентов на асинхронные силовые установки, а в 1903 г. в Новороссийске начинает работать элеватор с механизмами, оснащенными трехфазными асинхронными моторами.

Область применения

Основные сферы применения электромоторов асинхронного типа:

  • для привода шпинделей и вспомогательных механизмов металлообрабатывающих станков;
  • для обеспечения движения конвейерных лент;
  • для вращения рабочих колес вентиляторов и насосов, перекачивающих воду и агрессивные жидкости;
  • для передачи крутящего момента к лебедкам грузоподъемной техники;
  • для привода механизмов в автоматических системах.

Типы двигателей

Основные типы двигателей асинхронного типа:

  1. Мотор однофазного типа, оборудованный ротором с короткозамкнутой намоткой. В конструкции статора предусмотрена рабочая намотка для 1-й фазы, но для раскрутки вала двигателя используется пусковой элемент. Дополнительные витки провода подключаются через конденсатор или катушку индуктивности. Схема коммутации обеспечивает сдвига фаз, позволяющий провернуть стальной ротор.
  2. Двигатель двухфазного или конденсаторного типа, отличающийся повышенной эффективностью при коммутации к бытовой сети переменного тока напряжением 220 В. В конструкции статора предусмотрены 2 катушки, смонтированные под углом 90°. Первичная намотка коммутируется к сети напрямую, а вторичная подсоединяется через емкость, обеспечивающую смещение фазы.
  3. Агрегат трехфазного типа оборудован 3 неподвижными обмотками, установленными через 120°. После подачи напряжения формируется вращающееся магнитное поле, обеспечивающее поворот вала с короткозамкнутыми витками провода. Выводы статора соединяются “звездой” или “треугольником”, что допускает применение электромотора при напряжении 220 или 380 В. Изделия подобной конструкции используются в станках и грузоподъемных механизмах.
  4. Трехфазная машина с фазной обмоткой оснащается подвижным ротором с сердечником с пазами, в который уложены витки медного провода. В остальных конструкциях в сердечнике находятся алюминиевые элементы. Концы проводки, соединенной “звездой” выведены на коллекторные кольца, которые изолированы от стальной оси двигателя. При помощи щеток на кольца подается переменное напряжение, обеспечивающее при пуске увеличенный крутящий момент. Устройства используются в механизмах, включаемых под нагрузкой (например, лебедки лифтов).

Существуют моторы с питанием роторных катушек при помощи несимметричного раствора щеток. В конструкции подвижного элемента установлены 2 катушки, которые подключены к внешней сети и к вторичной неподвижной намотке на статоре. Конструкция позволяет регулировать частоту вращения, но отличается повышенной сложностью и требует регулярного обслуживания.

Изделия использовались в 30-40-х гг. прошлого столетия для привода промышленного оборудования, но затем были вытеснены стандартными электродвигателями с фазными роторами.

Принцип работы

При подведении напряжения к неподвижным обмоткам трехфазного мотора асинхронного типа в фазах формируется магнитное переменное поле. Поток изменяется в соответствии с частотой подведенного тока. Поскольку в конструкции узла использованы 3 катушки, то сформированные потоки имеют смещение по времени и пространству на 120°. Итоговый индукционный поток вращается, пересекая центральный подвижный сердечник и обеспечивая наводку разницы потенциалов в коротко замкнутых проводниках, расположенных в теле ротора.

Поскольку цепи замкнуты, то электродвижущая сила формирует ток, вступающий во взаимодействие с подвижным магнитным полем от намотки статора. В результате искажения поля формируется крутящий момент, стремящийся провернуть вал в сторону движения магнитной индукции от неподвижной обмотки. Нарастающий крутящий момент преодолевает силы торможения ротора (из-за веса детали, приложенной внешней нагрузки и силы трения в подшипниковых опорах), что приводит к началу раскрутки вала двигателя.

Устройство асинхронного двигателя

Корпус мотора отличается из серого чугуна или алюминиевого сплава, встречаются стальные конструкции сварного типа. Поскольку при прохождении тока через катушки происходит нагрев деталей, то на поверхности кожуха предусматриваются продольные ребра, обеспечивающие повышенный теплообмен. Внутренняя поверхность корпуса предназначена для установки сердечника статора, который установлен с натягом и дополнительно закреплен резьбовыми соединениями.

Сердечник собирается из деталей, полученных методом штамповки из листов электротехнической стали толщиной до 0,5 мм. Заготовки покрываются слоем специального лака, а затем соединяются в пакеты. Для фиксации элементов используются заклепки, скобы или сварка. Конструкция сердечника обеспечивает снижение вихревых токов, формирующихся при перемагничивании узла вращающимся магнитным полем. В конструкции пакета предусмотрены пазы, в которые укладываются витки провода, соединенные между собой на торцевых кромках (за пределами сердечника).

Ротор собран из элементов, отштампованных из стали (шихтованная схема), которые надеты на вал из конструкционной стали.

Элементы не имеют диэлектрического покрытия, поскольку генерируемые вихревые токи имеют небольшую частоту. Ось имеет поверхности, предназначенные для установки внутренних колец подшипников качения. Внешние концы вала нужны для установки шкивов или иных приспособлений для передачи крутящего момента. На тыловой части оси устанавливается вентилятор, обеспечивающий дополнительное охлаждение двигателя.

Процессы в асинхронной машине

Основные процессы, протекающие в электродвигателе асинхронного типа:

  1. Сформированное неподвижными катушками статора индукционное поле совершает вращательное движение относительно покоящегося корпуса мотора, способствуя наведению разницы потенциалов в проводниках, установленных в роторе. Параметр зависит от количества витков провода в катушке, частоты тока и значения магнитного поля. В расчетную формулу вводится поправочный коэффициент, учитывающий потери внутри катушек.
  2. Фаза неподвижной катушки находится в состоянии электрического равновесия, описываемого уравнением. При расчете учитываются значения напряжения во внешней сети и на входе в обмоточный провод, также на расчет оказывает влияние активное и индуктивное сопротивления катушек и сила тока в цепи. Формирующийся магнитный поток находится в зависимости от напряжения в катушках и частоты электрического тока, но на него не влияют режимы работы или замедляющий момент, приложенный к валу электродвигателя.
  3. В неподвижной роторной части частота наведенной электродвижущей силы соответствует частоте внешнего источника питания. По мере увеличения частоты вращения происходит корректировка частоты ЭДС пропорционально корректировке величины скольжения. Максимальное значение частоты достигается в момент начала вращения вала. Напряжение электродвижущей силы изменяется аналогично. Соотношение ЭДС в неподвижных катушках и в проводниках ротора называется коэффициентом трансформации.
  4. Важным эксплуатационным параметром является сила тока в подвижной части, которая зависит от индуктивного и активного сопротивлений, связанных с потоком рассеяния и тепловыми потерями внутри проводников. По мере увеличения скольжения машины происходит нарастание силы тока, кривая отстает от графика изменения значения напряжения электродвижущей силы.
  5. Поскольку ротор оборудован несколькими витками проводки, то при наведении тока образуется вращающееся поле. Периодичность вращения индукции от подвижных катушек равняется периодичности вращения поля неподвижных обмоток. За счет этого эффекта достигается неподвижность индукционных потоков относительно друг друга, что позволяет использовать для расчета параметров асинхронного оборудования законы и формулы, выведенные для трансформаторов.

Понятие скольжения

Скольжением асинхронного устройства называется соотношение числа оборотов магнитного поля, сформированного неподвижными катушками, к частоте вращения ротора электродвигателя.

Параметр выражается в процентном соотношении и используется при оценке эффективности работы силового привода. В момент пуска значение равно 100%, но по мере раскручивания вала параметр начинает снижаться. Одновременно уменьшаются значения электродвижущей силы и тока, наводимых в витках ротора, что ведет к падению кривой крутящего момента.

На холостом ходу (без приложения нагрузки) значение скольжения достигает минимального значения, но по мере приложения статической нагрузки параметр увеличивается (из-за замедления периодичности вращения вала электромотора). При превышении критического значения возникает эффект опрокидывания мотора, приводящий к нестабильной работе устройства. Процесс изменения скольжения прекращается при уравновешивании электромагнитного момента статора тормозным усилием, приложенным к валу машины.

Условия для получения вращающегося магнитного поля

В пособиях по теории электродвигателей указываются следующие условия для получения магнитного поля:

  • применение 2 и более неподвижных обмоток;
  • обеспечение смещения фаз тока в каждой из катушек;
  • смещение осей катушек в пространстве.

Угол смещения зависит от количества пар полюсов. В простейшей трехфазной машине с единой парой контактов угол сдвига составляет 120°. Введение дополнительной пары полюсов обеспечивает уменьшение угла до 60°. Каждая последующая пара контактных элементов приводит к корректировке значения угла в 2 раза.

Когда возникает электромагнитный момент

Электромагнитный вращающий момент создается в результате взаимодействия тока, наведенного в подвижной части асинхронной машины, с совершающим вращательное движением магнитным полем от неподвижных катушек. Значения момента находится в пропорциональной зависимости от мощности электрических потерь в роторе. При расчете момента учитывается ряд параметров (например, напряжение в цепи питания и частота тока), которые не меняются в процессе работы электрической машины. В формуле присутствует коэффициент скольжения, оказывающий влияние на момент.

Его зависимость от скольжения

Кривая зависимости момента от коэффициента скольжения называется механической характеристикой асинхронного электродвигателя. Кривая состоит из участка генераторного режима, двигательного сектора и тормозного участка. Пик крутящего момента соответствует критическому значению скольжения, причем значение момента в режиме генератора выше аналогичного параметра в двигательном состоянии.

Пуск в ход асинхронного двигателя и регулирование частоты вращения

Методика прямого пуска используется на машинах с короткозамкнутой обмоткой ротора. При расчете оборудования обеспечивается пониженная сила тока в цепи, что позволяет избегать повышения температуры и электродинамического усилия. Способ непосредственного запуска используется на установках с низкой или средней мощностью (не требующих высокого стартового момента). Для раскрутки мощных электродвигателей методика не применяется, поскольку прямая коммутация приводит к временному падению напряжения во внешней сети на 10-15%.

Способ запуска при пониженном напряжении применяется при использовании моторов средней и высокой мощности в сетях с недостаточным ресурсом.

Стартовая обмотка переводится в схему “звезда”, а после раскрутки ротора катушки в “треугольник”. Допускается введение в цепи пуска сопротивлений или автоматических трансформаторов. Недостатком методики является падение значения момента (снижение прямо пропорционально квадрату напряжения на входе), пуск производится только без внешней нагрузки.

Пусковой реостат используется в цепях возбуждения устройств с фазной обмоткой на подвижном элементе. По мере увеличения частоты вращения происходит снижение сопротивления, что позволяет постепенно перевести двигатель в штатный режим работы. Способ используется при повышенной нагрузке на электромотор или при необходимости плавной регулировки частоты вращения.

Для регулировки частоты вращения применяются методики:

  • изменения активного сопротивления (только для изделий с фазным ротором);
  • корректировки напряжения во внешней сети;
  • отключения пар полюсов;
  • изменения частоты питающего тока.

Тормозные режимы

При работе асинхронной силовой машины существует 4 режима торможения. Рекуперативное замедление возможно при частоте вращения вала двигателя больше скорости вращения электромагнитного поля. Ситуация разгона вала происходит при спуске груза на лебедке, образующиеся излишки электромагнитной мощности возвращаются во внешнюю сеть. Динамическое торможение осуществляется путем подачи постоянного напряжения на неподвижные катушки, которое вызывает формирование неподвижного поля, замедляющего вращение вала.

Конденсаторное замедление осуществляется путем подключения емкостей к неподвижным обмоткам. Излишки энергии преобразуются в электричество, теряющееся в подвижном элементе двигателя. Методика применяется для установок мощностью до 5 кВт. Замедление противовключением подразумевает изменение чередования фаз, что позволяет резко остановить ротор. Магнитные потоки вращаются в противоположных направлениях, что приводит к увеличению коэффициента скольжения до значения более единицы.

Принцип работы асинхронного двигателя

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока. А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать. Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Внимание! Так как в процессе пуска, тем более под нагрузкой, величина тока сильно возрастает, то и емкость пускового конденсатора должна быть раза в три больше конденсатора рабочего.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Способы подключения электродвигателей

Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе – хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.

Трехфазные и однофазные двигатели

Схемы подключения двигателя звезда, треугольник

Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:

    Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку – невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции.

Электрические коммутации двигателя

Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует – попробуем доработать недочет своими руками. Понадобится китайский тестер.

У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:

  • Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
  • Наименьшее значение образуется меж концами рабочей обмотки.
  • Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.

Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.

Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.

Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.

Синхронные, асинхронные, коллекторные двигатели

Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.

Обсудим три типа двигателей:

  1. Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
  2. Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны.

Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:

  1. Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны – цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
  2. Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.

И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.

Источники:

http://zametkielectrika.ru/princip-raboty-asinxronnogo-dvigatelya/

http://onlineelektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html

http://vashtehnik.ru/elektrika/sposoby-podklyucheniya-elektrodvigatelej.html

http://sovet-ingenera.com/elektrika/uzo-schet/differencialnyj-avtomaticheskij-vyklyuchatel.html

Ссылка на основную публикацию